?第九章 概率
9.1隨機(jī)事件與概率
9.2事件的相互獨(dú)立性、頻率與概率
9.3概率實(shí)戰(zhàn)


9.1隨機(jī)事件與概率
知識(shí)回顧
1、概率與頻率
一般地,隨著試驗(yàn)次數(shù)的增大,頻率偏離概率的幅度會(huì)縮小,即事件發(fā)生的頻率會(huì)逐漸穩(wěn)定于事件發(fā)生的概率.我們稱頻率的這個(gè)性質(zhì)為頻率的穩(wěn)定性.因此,我們可以用頻率來估計(jì)概率.?
2、古典概型
試驗(yàn)具有如下共同特征:
(1)有限性:樣本空間的樣本點(diǎn)只有有限個(gè);
(2)等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等.
我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡稱古典概型.
3、古典概型的概率公式
一般地,設(shè)試驗(yàn)是古典概型,樣本空間包含個(gè)樣本點(diǎn),事件包含其中的個(gè)樣本點(diǎn),則定義事件的概率.
其中,和分別表示事件和樣本空間包含的樣本點(diǎn)個(gè)數(shù).
4、概率的基本性質(zhì)(性質(zhì)1、性質(zhì)2、性質(zhì)5)
性質(zhì)1:對任意的事件,都有;
性質(zhì)2:必然事件的概率為1,不可能事件的概率為0,即,;
性質(zhì)5:如果,那么,由該性質(zhì)可得,對于任意事件,因?yàn)椋?
5、互斥事件的概率加法公式(性質(zhì)3)
性質(zhì)3:如果事件與事件互斥,那么;
注意:只有事件與事件互斥,才可以使用性質(zhì)3,否則不能使用該加法公式.
6、對立事件的概率(性質(zhì)4)
性質(zhì)4:如果事件與事件互為對立事件,那么,;
高頻考點(diǎn)
1.(2022·貴州·高二學(xué)業(yè)考試)同時(shí)拋擲兩枚硬幣,則兩枚硬幣都是“正面向上”的概率為(????)
A. B. C. D.
【答案】A
【詳解】同時(shí)拋擲兩枚硬幣的所有實(shí)驗(yàn)情況為:(正,正),(正,反),(反,正),(反,反),
兩枚硬幣都是“正面向上”的實(shí)驗(yàn)情況為(正,正),
根據(jù)古典概型,概率為,
故選:A.
2.(2022·北京·高三學(xué)業(yè)考試)甲、乙兩個(gè)學(xué)習(xí)小組各有5名同學(xué),兩組同學(xué)某次考試的語文、數(shù)學(xué)成績?nèi)缦聢D所示,其中“+”表示甲組同學(xué),“*”表示乙組同學(xué).

從這兩個(gè)學(xué)習(xí)小組數(shù)學(xué)成績高于80分的同學(xué)中任取一人,此人恰為甲組同學(xué)的概率是(????)
A.0.25 B.0.3 C.0.5 D.0.75
【答案】C
【詳解】根據(jù)圖象可知,兩個(gè)小組高于分的同學(xué)各有人,
所以從中任取一人,此人恰為甲組同學(xué)的概率是.
故選:C
3.(2022·四川·高三學(xué)業(yè)考試)若從中隨機(jī)選取一個(gè)數(shù)記為,從中隨機(jī)選取一個(gè)數(shù)記為,則的概率是(???????)
A. B. C. D.
【答案】B
【詳解】從中隨機(jī)選取一個(gè)數(shù)記為,從中隨機(jī)選取一個(gè)數(shù)記為,
將取出的,記為,
所有可能出現(xiàn)的結(jié)果為: ,共個(gè),
其中滿足的有,共3個(gè),
所以,的概率為.
故選:B.
4.(2022·湖南婁底·高二學(xué)業(yè)考試)甲?乙去同一家藥店各購一種醫(yī)用外科口罩,已知這家藥店出售A,B?C三種醫(yī)用外科口罩,則甲?乙購買的是同一種醫(yī)用外科口罩的概率為(????)
A. B. C. D.
【答案】A
【詳解】甲、乙在A,B,C三種醫(yī)用外科口罩中各購一種的基本事件有,,,
,,,,,共9種,
其中甲,乙購買的是同一種醫(yī)用外科口罩基本事件有,3種,
則其概率為.
故選:.
5.(2022·浙江·諸暨市教育研究中心高二學(xué)業(yè)考試)2021年某省新高考將實(shí)行“”模式,即語文、數(shù)學(xué)、外語必選,物理、歷史二選一,政治、地理、化學(xué)、生物四選二,共有12種選課模式.某同學(xué)已選了物理,記事件:“他選擇政治和地理”,事件:“他選擇化學(xué)和地理”,則事件與事件(????)
A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件
C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件
【答案】A
【詳解】事件與事件不能同時(shí)發(fā)生,是互斥事件
他還可以選擇化學(xué)和政治,不是對立事件
故答案選A
6.(2022·浙江·慈溪市三山高級中學(xué)高二學(xué)業(yè)考試)通蘇嘉甬高速鐵路起自南通西站, 經(jīng)蘇州市、嘉興市后跨越杭州灣進(jìn)入寧波市, 全線正線運(yùn)營長度, 其中新建線路長度, 是《中長期鐵路網(wǎng)規(guī)劃》中 “八縱八橫”高速鐵路主通道之一的沿海通道的重要組成部分, 是長江三角洲城市群的重要城際通道, 沿途共設(shè)南通西、張家港、常熟西、 蘇州北、汾湖、嘉興北、嘉興南、海鹽西、慈溪、莊橋等 10 座車站.假設(shè)甲、乙兩人從首發(fā)站(南通西) 同時(shí)上車, 在沿途剩余9站中隨機(jī)下車, 兩人互不影響, 則甲、乙兩人在同一站下車的概率為(????)
A. B. C. D.
【答案】D
【詳解】解:甲、乙兩人從首發(fā)站(南通西) 同時(shí)上車,沿途經(jīng)過剩余9個(gè)車站,甲、乙兩人隨機(jī)下車,互不影響,故甲、乙兩人下車包含的基本事件個(gè)數(shù)為:
設(shè)“甲、乙兩人在同一車站下車為事件M”,則事件M包含的基本事件個(gè)數(shù)為:
.
故選:D.
7.(2022·福建·高二學(xué)業(yè)考試)隨機(jī)投擲一枚質(zhì)地均勻的骰子,出現(xiàn)向上的點(diǎn)數(shù)為奇數(shù)的概率是(????)
A. B. C. D.
【答案】C
【詳解】隨機(jī)投擲一枚質(zhì)地均勻的骰子,點(diǎn)數(shù)向上的結(jié)果有6種,其中向上的點(diǎn)數(shù)為奇數(shù)的有3種
所以出現(xiàn)向上的點(diǎn)數(shù)為奇數(shù)的概率是
故選:C
二、填空題
8.(2022·天津南開·高二學(xué)業(yè)考試)某班有60名學(xué)生,其中女生24人,現(xiàn)任選一人,則選中男生的概率為___________.
【答案】##
【詳解】解:依題意選中男生的概率;
故答案為:
9.(2022·浙江·太湖高級中學(xué)高二學(xué)業(yè)考試)劉徽是魏晉時(shí)代著名數(shù)學(xué)家,是我國古代數(shù)學(xué)的集大成者,他給出了階幻方的構(gòu)作方法是數(shù)學(xué)史上算法的范例,他的階幻方被稱為“神農(nóng)幻方”.所謂幻方,是把排成的方陣,使其每行、每列和對角線的數(shù)字之和均相等.下圖是劉徽構(gòu)作的3階幻方,現(xiàn)從中隨機(jī)抽取三個(gè)數(shù),滿足數(shù)字之和等于15,則含有數(shù)字5或6的概率為______.
8
1
6
3
5
7
4
9
2
【答案】##0.75
【詳解】由題意得,
該3階幻方每行、每列和對角線上的數(shù)字之和均等于15,
從中隨機(jī)抽取三個(gè)數(shù),數(shù)字之和等于15,基本事件總數(shù)為8,
易知事件“含有數(shù)字5或6”包含的基本事件數(shù)為6,
故所求事件的概率為.
故答案為:.
三、解答題
10.(2022·重慶·高一學(xué)業(yè)考試)某班有45名學(xué)生,其中選考化學(xué)的學(xué)生有23人,選考地理的學(xué)生有15人,選考化學(xué)或地理的學(xué)生有29人,從該班任選一名學(xué)生,則該生既選考化學(xué)又選考地理的概率為__________.
【答案】
【詳解】根據(jù)容斥原理,既選考化學(xué)又選考地理的人數(shù)為,
由古典概型的公式,可得,
故答案為:.
11.(2022·甘肅·天水市第一中學(xué)高二學(xué)業(yè)考試)某省會(huì)城市為了積極倡導(dǎo)市民優(yōu)先乘坐公共交通工具綠色出行,切實(shí)改善城市空氣質(zhì)量,緩解城市交通壓力,公共交通系統(tǒng)推出“2元換乘暢享公交”“定制公交”“限行日免費(fèi)乘公交”“綠色出行日免費(fèi)乘公交”等便民服務(wù)措施.為了更好地了解乘坐公共交通的乘客的年齡分布,交管部門對某線路公交車統(tǒng)計(jì)整理了某一天1200名乘客的年齡數(shù)據(jù),得到的頻率分布直方圖如下圖所示:

(1)求m的值和這1200名乘客年齡的中位數(shù);
(2)現(xiàn)在從年齡分布在人中用分層抽樣的方法抽取5人,再從這5人中抽取2人進(jìn)行問卷調(diào)查,求這2人中至少有一人年齡在的概率.
【答案】(1),中位數(shù)為;
(2)
(1)
解:依題意可得,解得,
因?yàn)?,所以中位?shù)為于,
設(shè)中位數(shù)為,則,解得,故這1200名乘客年齡的中位數(shù)為;
(2)
解:從年齡分布在人中用分層抽樣的方法抽取5人,則中抽取人,記作、,
中抽取人,記作、、,
則從這5人中抽取2人進(jìn)行問卷調(diào)查有,,,,,,,,,共個(gè)基本事件;
滿足這2人中至少有一人年齡在的有,,,,,,共個(gè)基本事件,
所以滿足這2人中至少有一人年齡在的概率;
12.(2022·全國·高一學(xué)業(yè)考試)2022年將在成都舉行“第31屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)”,為迎接大運(yùn)會(huì),郫都區(qū)舉行了“愛成都迎大運(yùn)”系列活動(dòng).同時(shí)為了了解郫都區(qū)人民對體育運(yùn)動(dòng)的熱情和對運(yùn)動(dòng)相關(guān)知識(shí)的掌握情況,郫都區(qū)總工會(huì)在各社區(qū)開展了有獎(jiǎng)知識(shí)競賽,參賽人員所得分?jǐn)?shù)的分組區(qū)間為、、、、,由此得到總體的頻率統(tǒng)計(jì)表,再利用分層抽樣的方式隨機(jī)抽取20名居民進(jìn)行進(jìn)一步調(diào)研.
分?jǐn)?shù)區(qū)間





頻率
0.1

0.4
0.2
a

(1)若從得分在80分以上的樣本中隨機(jī)選取2人,則選出的兩人中至少有一人在90分以上的概率;
(2)郫都區(qū)總工會(huì)計(jì)劃對此次參加活動(dòng)的居民全部進(jìn)行獎(jiǎng)勵(lì),按照分?jǐn)?shù)從高到低設(shè)置一等獎(jiǎng),二等獎(jiǎng),三等獎(jiǎng),參與獎(jiǎng),其得獎(jiǎng)率分別為15%,20%,25%,40%,試根據(jù)上表估計(jì)得到二等獎(jiǎng)的分?jǐn)?shù)區(qū)間.
【答案】(1)
(2),
(1)由題意得,所以.得分位于的共有人,分別為A,B,C,D,得分位于的共有人,分別為E,F(xiàn)從這6人中選出2人共有{A,B},{A,C},{A,D},{A,E},{A,F(xiàn)},{B,C},{B,D},{B,E},{B,F(xiàn)},{C,D},{C,E},{C,F(xiàn)},{D,E},{D,F(xiàn)},{E,F(xiàn)}這15種情況,其中含有至少一人為90分以上的情況是{A,E},{A,F(xiàn)},{B,E},{B,F(xiàn)},{C,E},{C,F(xiàn)},{D,E},{D,F(xiàn)},{E,F(xiàn)}共9種情況,所以選出的兩人中至少有一人在90分以上的概率.
(2)設(shè)得一等獎(jiǎng)的最低分?jǐn)?shù)為x,二等獎(jiǎng)的最低分?jǐn)?shù)為y;則,解出,解出所以二等獎(jiǎng)的分?jǐn)?shù)區(qū)間為.(或:一等獎(jiǎng)的最低分?jǐn)?shù)為二等獎(jiǎng)的最低分?jǐn)?shù)為,從而二等獎(jiǎng)的分?jǐn)?shù)區(qū)間為)
13.(2022·全國·高一學(xué)業(yè)考試)從甲地到乙地沿某條公路行駛一共200公里,遇到紅燈個(gè)數(shù)的概率如下表所示:
紅燈個(gè)數(shù)
0
1
2
3
4
5
6個(gè)及6個(gè)以上
概率
0.02
0.1

0.35
0.2
0.1
0.03
(1)求表中字母的值;
(2)求至少遇到4個(gè)紅燈的概率;
(3)求至多遇到5個(gè)紅燈的概率.
【答案】(1)0.2;(2)0.33;(3)0.97.
【詳解】(1)由題意可得,解得.
(2)設(shè)事件為遇到紅燈的個(gè)數(shù)為4,事件為遇到紅燈的個(gè)數(shù)為5,事件為遇到紅燈的個(gè)數(shù)為6個(gè)及以上,則事件“至少遇到4個(gè)紅燈”為,因?yàn)槭录コ?,所?br /> ,即至少遇到4個(gè)紅燈的概率為0.33.
(3)設(shè)事件為遇到6個(gè)及6個(gè)以上紅燈,則至多遇到5個(gè)紅燈為事件.
則.
9.2事件的相互獨(dú)立性、頻率與概率
知識(shí)回顧
1、相互獨(dú)立事件
對任意兩個(gè)事件與,如果成立,則稱事件與事件相互獨(dú)立(mutually independent),簡稱為獨(dú)立.
性質(zhì)1:必然事件、不可能事件與任意事件相互獨(dú)立
性質(zhì)2:如果事件與相互獨(dú)立,則與,與,與也相互獨(dú)立
則:,,
高頻考點(diǎn)
1.(2022·湖南·懷化市辰溪博雅實(shí)驗(yàn)學(xué)校高二學(xué)業(yè)考試)甲地下雨的概率為,乙地下雨的概率為,兩地是否下雨相互獨(dú)立,則兩地同時(shí)下雨的概率為(????)
A. B. C. D.
【答案】A
【詳解】解:記“甲地下雨”為事件,則,
記“乙地下雨”為事件,則,
兩地同時(shí)下雨的概率為.
故選:A.
2.(2022·浙江·諸暨市教育研究中心高二學(xué)業(yè)考試)壇子中放有3個(gè)白球、2個(gè)黑球,從中不放回地取球2次,每次取1個(gè)球,用表示“第一次取得白球”,表示“第二次取得白球”,則和是(????)
A.互斥的事件 B.相互獨(dú)立的事件
C.對立的事件 D.不相互獨(dú)立的事件
【答案】D
【詳解】設(shè)白球編號為,黑球的編號為,
從壇子中不放回地取球2次,基本事件有,
,,
,所以和是不相互獨(dú)立的事件.
基本事件包括“第次取到白球,第次取到白球”,即和可以同時(shí)發(fā)生,
所以和不是互斥,也不是對立事件.
故選:D
3.(2022·浙江·諸暨市教育研究中心高二學(xué)業(yè)考試)拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為(????)
A.與互為對立事件 B.與互斥
C.與相等 D.與互為獨(dú)立事件
【答案】D
【詳解】因?yàn)閽仈S兩枚質(zhì)地均勻的硬幣包含:
第一枚硬幣正面朝上第二枚硬幣正面朝上;第一枚硬幣正面朝上第二枚硬幣反面朝上;
第一枚硬幣反面朝上第二枚硬幣正面朝上;第一枚硬幣反面朝上第二枚硬幣反面朝上,共4種情況.
其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,
所以與不互斥,也不對立,也不相等,且發(fā)生互不影響,故D正確.
所以ABC錯(cuò)誤,D正確,
故選:D
4.(2022·浙江·太湖高級中學(xué)高二學(xué)業(yè)考試)已知事件A?B相互獨(dú)立,,則(????)
A.0.58 B.0.9 C.0.7 D.0.72
【答案】A
【詳解】由題意

故選:A
5.(2022·浙江·諸暨市教育研究中心高二學(xué)業(yè)考試)某大學(xué)的“籃球”“無人機(jī)”“戲劇”三個(gè)社團(tuán)考核挑選新社員,已知大一某新生對這三個(gè)社團(tuán)都很感興趣,決定三個(gè)考核都參加,假設(shè)他通過“籃球”“無人機(jī)”“戲劇”三個(gè)社團(tuán)考核的概率依次為、、,且他通過每個(gè)考核相互獨(dú)立,若三個(gè)社團(tuán)考核他都能通過的概率為,至少通過一個(gè)社團(tuán)考核的概率為,則(????)
A. B.
C. D.
【答案】D
【詳解】因?yàn)槿齻€(gè)社團(tuán)考核他都能通過的概率為,至少通過一個(gè)社團(tuán)考核的概率為,
所以,即,解得.
故選: D.
6.(2022·浙江·諸暨市教育研究中心高二學(xué)業(yè)考試)兩位男同學(xué)和兩位女同學(xué)隨機(jī)排成一列,則兩位女同學(xué)相鄰的概率是
A. B. C. D.
【答案】D
【詳解】兩位男同學(xué)和兩位女同學(xué)排成一列,因?yàn)槟猩团藬?shù)相等,兩位女生相鄰與不相鄰的排法種數(shù)相同,所以兩位女生相鄰與不相鄰的概率均是.故選D.
7.(2022·全國·高一學(xué)業(yè)考試)2021年神舟十二號、十三號載人飛船發(fā)射任務(wù)都取得圓滿成功,這意味著我國的科學(xué)技術(shù)和航天事業(yè)取得重大進(jìn)步.現(xiàn)有航天員甲、乙、丙三個(gè)人,進(jìn)入太空空間站后需要派出一人走出太空站外完成某項(xiàng)試驗(yàn)任務(wù),工作時(shí)間不超過10分鐘,如果10分鐘內(nèi)完成任務(wù)則試驗(yàn)成功結(jié)束任務(wù),10分鐘內(nèi)不能完成任務(wù)則撤回再派下一個(gè)人,每個(gè)人只派出一次.已知甲、乙、丙10分鐘內(nèi)試驗(yàn)成功的概率分別為,,,每個(gè)人能否完成任務(wù)相互獨(dú)立,該項(xiàng)試驗(yàn)任務(wù)按照甲、乙、丙順序派出,則試驗(yàn)任務(wù)成功的概率為(????)
A. B. C. D.
【答案】D
【詳解】試驗(yàn)任務(wù)成功的事件是甲成功的事件,甲不成功乙成功的事件,甲乙都不成功丙成立的事件的和,
事件,,互斥,,,,
所以試驗(yàn)任務(wù)成功的概率.
故選:D
8.(多選)(2022·浙江·杭州市余杭高級中學(xué)高二學(xué)業(yè)考試)從甲袋中摸出一個(gè)紅球的概率是,從乙袋中摸出一個(gè)紅球的概率是,從兩袋各摸出一個(gè)球,下列結(jié)論正確的是(????)
A.個(gè)球都是紅球的概率為 B.個(gè)球不都是紅球的概率為
C.至少有個(gè)紅球的概率為 D.個(gè)球中恰有個(gè)紅球的概率為
【答案】ACD
【詳解】解:由題可知,從甲袋中摸出一個(gè)紅球的概率是,從乙袋中摸出一個(gè)紅球的概率是,
則從甲袋中摸出一個(gè)不是紅球的概率是,從乙袋中摸出一個(gè)不是紅球的概率是,
對于A選項(xiàng),個(gè)球都是紅球的概率為,A選項(xiàng)正確;
對于B選項(xiàng),個(gè)球不都是紅球的概率為,B選項(xiàng)錯(cuò)誤;
對于C選項(xiàng),至少有個(gè)紅球的概率為,C選項(xiàng)正確;
對于D選項(xiàng),個(gè)球中恰有個(gè)紅球的概率,D選項(xiàng)正確.
故選:ACD.
9.(2022·浙江·諸暨市教育研究中心高二學(xué)業(yè)考試)城區(qū)某道路上甲、乙、丙三處設(shè)有信號燈,汽車在這三處因遇綠燈而通行的概率分別為,,則汽車在這三處因遇紅燈或黃燈而停車一次的概率為________.
【答案】
【詳解】∵設(shè)汽車分別在甲乙丙三處的通行為事件,停車為,
∴,,,
∵停車一次即為事件,
∴所求概率為:.
故答案為: .
10.(2022·全國·高二學(xué)業(yè)考試)計(jì)算機(jī)考試分理論考試與實(shí)際操作兩部分,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計(jì)算機(jī)考試“合格”,并頒發(fā)合格證書甲、乙、丙三人在理論考試中“合格”的概率依次為,,,在實(shí)際操作考試中“合格”的概率依次為,,,所有考試是否合格相互之間沒有影響.
(1)假設(shè)甲、乙、丙三人同時(shí)進(jìn)行理論與實(shí)際操作兩項(xiàng)考試,誰獲得合格證書的可能性最大?
(2)這三人進(jìn)行理論與實(shí)際操作兩項(xiàng)考試后,求恰有兩人獲得合格證書的概率.
【答案】(1)丙;(2)
【詳解】(1)設(shè)“甲獲得合格證書”為事件A,“乙獲得合格證書”為事件B,“丙獲得合格證書”為事件C,則,,.
因?yàn)?,所以丙獲得合格證書的可能性最大.
(2)設(shè)“三人考試后恰有兩人獲得合格證書”為事件D,則.

9.3概率實(shí)戰(zhàn)
一、單選題
1.(2021·貴州·高二學(xué)業(yè)考試)從甲、乙、丙三名候選人中任選兩人參加黨史知識(shí)競賽,則乙被選中的概率為(????)
A. B. C. D.
【答案】C
【詳解】解:從甲、乙、丙三名候選人中任選兩人參加黨史知識(shí)競賽,
共有(甲,乙),(甲,丙),(乙,丙)3種選法,
其中乙被選中有2種選法,
故乙被選中的概率為.
故選:C.
2.(2021·北京·高二學(xué)業(yè)考試)《北京2022年冬奧會(huì)——冰上運(yùn)動(dòng)》紀(jì)念郵票一套共有5枚,郵票圖案名稱分別為:短道速滑、花樣滑冰、速度滑冰、冰壺、冰球.小冬買了一套該種紀(jì)念郵票,準(zhǔn)備隨機(jī)送給小冰等5位同學(xué),每人1枚,則小冰收到郵票的圖案名稱是短道速滑的概率為(????)
A. B. C. D.
【答案】C
【詳解】解:依題意,任何一位同學(xué)收到短道速滑圖案的郵票概率都為,
故選:C
3.(2021·福建·高三學(xué)業(yè)考試)根據(jù)防疫要求,需從名男醫(yī)生和名女醫(yī)生中任選名參加社區(qū)防控服務(wù),則選中的名都是男醫(yī)生的概率為(????)
A. B. C. D.
【答案】B
【詳解】解:將名男醫(yī)生記為,,名女醫(yī)生記為
從名男醫(yī)生和名女醫(yī)生中任選名參加社區(qū)防控服務(wù),所有可能情況有:
,,共種
選中的名都是男醫(yī)生的情況為:,共種
所以選中的名都是男醫(yī)生的概率為:.
故選:B.
4.(2021·山東·高三學(xué)業(yè)考試)從裝有兩個(gè)紅球和兩個(gè)白球的口袋內(nèi)任取兩個(gè)球,那么互斥而不對立的事件是(????)
A.至少有一個(gè)白球與都是紅球 B.恰好有一個(gè)白球與都是紅球
C.至少有一個(gè)白球與都是白球 D.至少有一個(gè)白球與至少一個(gè)紅球
【答案】B
【詳解】解:對于A,事件:“至少有一個(gè)白球”與事件:“都是紅球”不能同時(shí)發(fā)生,但是對立,故A錯(cuò)誤;
對于B,事件:“恰好有一個(gè)白球”與事件:“都是紅球”不能同時(shí)發(fā)生,但從口袋內(nèi)任取兩個(gè)球時(shí)還有可能是兩個(gè)都是白球,
所以兩個(gè)事件互斥而不對立,故B正確;
對于C,事件:“至少有一個(gè)白球”與事件:“都是白球”可以同時(shí)發(fā)生,所以這兩個(gè)事件不是互斥的,故C錯(cuò)誤;
對于D,事件:“至少有一個(gè)白球”與事件:“至少一個(gè)紅球”可以同時(shí)發(fā)生,即“一個(gè)白球,一個(gè)紅球” ,所以這兩個(gè)事件不是互斥的,故D錯(cuò)誤.
故選:B.
5.(2021·北京·高二學(xué)業(yè)考試)擲一枚均勻的骰子,觀察朝上的面的點(diǎn)數(shù).記事件 “點(diǎn)數(shù)為奇數(shù)”,事件 “點(diǎn)數(shù)大于4”,則事件(????)
A.“點(diǎn)數(shù)為3” B.“點(diǎn)數(shù)為4”
C.“點(diǎn)數(shù)為5” D.“點(diǎn)數(shù)為6”
【答案】C
【詳解】由題意,可知,,
即事件“點(diǎn)數(shù)為5”
故選:C
6.(2021·天津紅橋·高一學(xué)業(yè)考試)一個(gè)袋子裝有四個(gè)形狀、大小完全相同的球,球的編號分別為1、2、3、4,從袋中隨機(jī)抽取兩個(gè)球,則取出的球的編號之和等于5的概率為(????)
A. B.
C. D.
【答案】B
【詳解】解:從編號為1、2、3、4的4個(gè)球中隨機(jī)抽取兩個(gè)球,其可能結(jié)果有,,,,,共6個(gè),其中滿足編號之和等于5的有,共2個(gè),
所以取出的球的編號之和等于5的概率
故選:B
7.(2021·湖北·高二學(xué)業(yè)考試)中國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”.如4=2+2,6=3+3,8=3+5,…,現(xiàn)從3,5,7,11,13這5個(gè)素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率是(???)
A. B. C. D.
【答案】B
【詳解】解:從3,5,7,11,13這5個(gè)素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù)共有鐘可能,
其和等于16的結(jié)果(3,13),(5,11)2種等可能的結(jié)果,
所以概率.
故選:B.
8.(2021·遼寧大連·高三學(xué)業(yè)考試)擲一個(gè)骰子的試驗(yàn),事件表示“出現(xiàn)小于5的偶數(shù)點(diǎn)”,事件表示“出現(xiàn)小于5的點(diǎn)數(shù)”.若表示的對立事件,則一次試驗(yàn)中,事件發(fā)生的概率為(????)
A. B. C. D.
【答案】C
【詳解】擲一個(gè)骰子的試驗(yàn)有6種可能結(jié)果.
依題意,,,
因?yàn)楸硎尽俺霈F(xiàn)5點(diǎn)或6點(diǎn)”的事件,表示“出現(xiàn)小于5的偶數(shù)點(diǎn)”,
所以與互斥,
故.
故選:C
9.(2021·貴州·高二學(xué)業(yè)考試)擲一枚均勻的硬幣,如果連續(xù)拋擲1000次,那么第999次出現(xiàn)正面向上的概率是
A. B. C. D.
【答案】D
【詳解】每一次出現(xiàn)正面朝上的概率相等都是,故選D.
二、填空題
10.(2021·貴州·高二學(xué)業(yè)考試)從1,2,3,4,5這五個(gè)數(shù)中任取一個(gè)數(shù),則取到的數(shù)是偶數(shù)的概率為_____.
【答案】
【詳解】由已知1,2,3,4,5這五個(gè)數(shù)中,
偶數(shù)為2,4,所以偶數(shù)的概率為,
故答案為:.
11.(2021·山東·高三學(xué)業(yè)考試)一張方桌有四個(gè)座位,先坐在如圖所示的座位上,,,三人隨機(jī)坐到其他三個(gè)位置上,則與相鄰的概率為___________.

【答案】
【詳解】,,三人隨機(jī)坐到其他三個(gè)位置上,共有種等可能情況,
要使與不相鄰,則必坐在的對面,此時(shí)與的坐法共有2種情況,
所以根據(jù)古典概型求概率公式可知與相鄰的概率為.
故答案為:
三、解答題
12.(2021·湖南省邵東市第三中學(xué)高二學(xué)業(yè)考試)某企業(yè)為了解下屬某部門對本企業(yè)職工的服務(wù)情況,隨機(jī)訪問50名職工,根據(jù)這 50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計(jì)該企業(yè)的職工對該部門評分不低于80的概率;
(2)從評分在的受訪職工中,隨機(jī)抽取2人,求此2人評分都在 的概率.
【答案】(1); (2)
試題解析:(1)由頻率分布直方圖知,
所以.
該企業(yè)的職工對該部分評分不低于80的概率為.
(2)受訪職工中評分在的有:人,記為a,b,c;受訪職工中評分在的有:人,記為A,B,從這5名受訪職工中隨機(jī)抽取2人,所有的可能結(jié)果有10種,分別為:{a,b},{a,c},{a,A},{a,B},{b,c},{b,A},{b,B},{c,A},{c,B},{A,B},此2人評分都在包含的基本事件有{a,b},{a,c},{b,c},共3個(gè),
∴從評分在的受訪職工中,隨機(jī)抽取2人,此2人評分都在的概率.
13.(2021·廣西·高二學(xué)業(yè)考試)為了慶祝中國共產(chǎn)黨百年華誕,某學(xué)校黨支部舉行了黨史學(xué)習(xí)教育知識(shí)競賽,其中甲、乙兩個(gè)小組各選拔7名黨員參賽,參賽黨員的成績用莖葉圖表示如下:

(1)已知甲小組的平均數(shù)是87,乙小組的中位數(shù)是88,求x,y的值;
(2)若從甲、乙兩個(gè)小組成績在90分以上的黨員中抽取2人參加市級比賽,求這2人來自不同的小組的概率.
【答案】(1);;
(2).
(1)
∵甲小組的平均數(shù)是87,
∴,
∴,又乙小組的中位數(shù)是88,
∴;
(2)
由題可知甲小組成績在90分以上的黨員有3人,設(shè)為,
乙小組成績在90分以上的黨員有3人,設(shè)為,
則從這6人中抽取2人,
包括
共15種,
其中這2人來自不同的小組的有共9種,
故2人來自不同的小組的概率為.
14.(2021·遼寧大連·高三學(xué)業(yè)考試)在抗擊新冠肺炎疫情期間,某校開展了“名師云課”活動(dòng),活動(dòng)自開展以來獲得廣大家長和學(xué)生的高度關(guān)注.在“名師云課”中,數(shù)學(xué)學(xué)科共計(jì)推出72節(jié)云課,為了更好地將課程內(nèi)容呈現(xiàn)給學(xué)生,現(xiàn)隨機(jī)抽取某一時(shí)段數(shù)學(xué)學(xué)科的云課點(diǎn)擊量進(jìn)行統(tǒng)計(jì):
點(diǎn)擊量
[0,700]
(700,1400]
(1400,2100]
節(jié)數(shù)
12
36
24

(1)現(xiàn)從數(shù)學(xué)學(xué)科72節(jié)云課中采用分層抽樣的方式選出6節(jié),求選出云課的點(diǎn)擊量在(700,1400]內(nèi)的節(jié)數(shù);
(2)為了更好地搭建云課平臺(tái),現(xiàn)將數(shù)學(xué)學(xué)科云課進(jìn)行剪輯,若點(diǎn)擊量在 [0,700]內(nèi),則需要花費(fèi)40分鐘進(jìn)行剪輯,若點(diǎn)擊量在(700,1400]內(nèi),則需要花費(fèi)20分鐘進(jìn)行剪輯,若點(diǎn)擊量在(1400,2100]內(nèi),則不需要剪輯.現(xiàn)從(1)問選出的6節(jié)課中任意選出2節(jié)課進(jìn)行剪輯,求剪輯時(shí)間為60分鐘的概率.
【答案】(1)3;
(2).
(1)
設(shè)選出云課的點(diǎn)擊量在內(nèi)的節(jié)數(shù)為n,按分層抽樣,解得n=3.
(2)
按分層抽樣,由點(diǎn)擊量分別在、、節(jié)數(shù)比為12:36:24=1:3:2
所以6節(jié)課中,選出云課點(diǎn)擊量在、、節(jié)數(shù)分別為1、3、2,點(diǎn)擊量在的一節(jié)課設(shè)為,點(diǎn)擊量在設(shè)為, 點(diǎn)擊量在的設(shè)為,
又由題知選出2節(jié)課剪輯時(shí)間為60分鐘的選法是選出一節(jié)點(diǎn)擊量在內(nèi),另一節(jié)在內(nèi),共3種選法,為,,,其中從6節(jié)課中任意選出2節(jié)課進(jìn)行剪輯共15種選法,分別為,,,,,,,,,,,,,,
所以,剪輯時(shí)間為60分鐘的概率為.
15.(2021·天津河?xùn)|·高二學(xué)業(yè)考試)一個(gè)口袋內(nèi)裝有大小相同的6個(gè)小球,其中2個(gè)紅球記為,,4個(gè)黑球記為,,,,從中一次摸出2個(gè)球.
(1)寫出這個(gè)試驗(yàn)的樣本空間及樣本點(diǎn)總數(shù);
(2)求摸出的2個(gè)球顏色不同的概率.
【答案】(1)答案見解析;(2).
【詳解】(1)這個(gè)試驗(yàn)的樣本空間:,共15個(gè)樣本點(diǎn).
(2)由15個(gè)樣本點(diǎn)出現(xiàn)的可能性是相等的,且事件“2個(gè)球顏色不同”包含的樣本點(diǎn)有,,,,,,,,共8個(gè),∴所求事件的概率.

相關(guān)試卷

普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷02(全國通用)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū)):

這是一份普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷02(全國通用)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū)),文件包含普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷02解析版docx、普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷02原卷版docx等2份試卷配套教學(xué)資源,其中試卷共16頁, 歡迎下載使用。

普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷01(全國通用)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū)):

這是一份普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷01(全國通用)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū)),文件包含普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷01解析版docx、普通高中學(xué)業(yè)水平合格性考試數(shù)學(xué)綜合訓(xùn)練卷01原卷版docx等2份試卷配套教學(xué)資源,其中試卷共17頁, 歡迎下載使用。

08第八章 統(tǒng)計(jì)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū)):

這是一份08第八章 統(tǒng)計(jì)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū)),文件包含08第八章統(tǒng)計(jì)解析版docx、08第八章統(tǒng)計(jì)原卷版docx等2份試卷配套教學(xué)資源,其中試卷共40頁, 歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

07第七章 立體幾何初步——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū))

07第七章 立體幾何初步——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū))

05第五章 三角函數(shù)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū))

05第五章 三角函數(shù)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū))

03第三章 函數(shù)的概念與性質(zhì)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū))

03第三章 函數(shù)的概念與性質(zhì)——2023年高中數(shù)學(xué)學(xué)業(yè)水平考試專項(xiàng)精講+測試(人教A版2019,新教材地區(qū))

09第九章+概率(知識(shí)回顧+高頻考點(diǎn)訓(xùn)練)-2023年高中數(shù)學(xué)學(xué)業(yè)水平考試必備考點(diǎn)歸納與測試(人教A版2019,新教材地區(qū))

09第九章+概率(知識(shí)回顧+高頻考點(diǎn)訓(xùn)練)-2023年高中數(shù)學(xué)學(xué)業(yè)水平考試必備考點(diǎn)歸納與測試(人教A版2019,新教材地區(qū))

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
學(xué)業(yè)水平
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部