搜索
    上傳資料 賺現(xiàn)金

    [精] 第09講 函數(shù)的奇偶性與周期性-2021屆新課改地區(qū)高三數(shù)學(xué)一輪專題復(fù)習(xí)

    • 261 KB
    • 2021-01-19 10:55
    • 205
    • 4
    • 天行健
    加入資料籃
    立即下載
    當(dāng)前壓縮包共包含下列2份文件,點擊文件名可預(yù)覽資料內(nèi)容
    • 練習(xí)
      第09講 函數(shù)的奇偶性與周期性(原卷版).docx
    • 第09講 函數(shù)的奇偶性與周期性(解析版).docx
    第09講 函數(shù)的奇偶性與周期性(原卷版)第1頁
    1/9
    第09講 函數(shù)的奇偶性與周期性(原卷版)第2頁
    2/9
    第09講 函數(shù)的奇偶性與周期性(原卷版)第3頁
    3/9
    第09講 函數(shù)的奇偶性與周期性(解析版)第1頁
    1/18
    第09講 函數(shù)的奇偶性與周期性(解析版)第2頁
    2/18
    第09講 函數(shù)的奇偶性與周期性(解析版)第3頁
    3/18
    還剩6頁未讀, 繼續(xù)閱讀

    第09講 函數(shù)的奇偶性與周期性-2021屆新課改地區(qū)高三數(shù)學(xué)一輪專題復(fù)習(xí)

    展開

    ?第9講:函數(shù)的奇偶性與周期性
    一、 課程標(biāo)準(zhǔn)
    1.結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義.
    2.會運用函數(shù)圖象理解和研究函數(shù)的奇偶性.
    3.了解函數(shù)周期性、最小正周期的含義,會判斷、應(yīng)用簡單函數(shù)的周期性.

    二、 基礎(chǔ)知識回顧
    1、 奇、偶函數(shù)的定義
    對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(-x)=-f(x)(或f(-x)+f(x)=0),則稱f(x)為奇函數(shù);對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x)(或f(-x)-f(x)=0),則稱f(x)為偶函數(shù).
    2、 奇、偶函數(shù)的性質(zhì)
    (1)具有奇偶性的函數(shù),其定義域關(guān)于原點對稱(也就是說,函數(shù)為奇函數(shù)或偶函數(shù)的必要條件是其定義域關(guān)于原點對稱).
    (2)奇函數(shù)的圖像關(guān)于原點對稱,偶函數(shù)的圖像關(guān)于y軸對稱.
    (3)若奇函數(shù)的定義域包含0,則f(0)=__0__.
    (4)若函數(shù)f(x)是偶函數(shù),則有f(|x|)=f(x).
    (5)奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反.
    3、 周期性
    (1)周期函數(shù)
    對于函數(shù)y=f(x),如果存在一個非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的任何值時,都有f(x+T)=f(x),那么就稱函數(shù)y=f(x)為周期函數(shù),稱T為這個函數(shù)的周期.
    (2)最小正周期
    如果在周期函數(shù)f(x)的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做f(x)的最小正周期.
    4、函數(shù)奇偶性常用結(jié)論
    (1)如果函數(shù)f(x)是奇函數(shù)且在x=0處有定義,則一定有f(0)=0;如果函數(shù)f(x)是偶函數(shù),那么f(x)=f(|x|).
    (2)奇函數(shù)在兩個對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個對稱的區(qū)間上具有相反的單調(diào)性.
    5、函數(shù)周期性常用結(jié)論
    對f(x)定義域內(nèi)任一自變量x:
    (1)若f(x+a)=-f(x),則T=2a(a>0).
    (2)若f(x+a)=,則T=2a(a>0).
    (3)若f(x+a)=-,則T=2a(a>0).
    6、函數(shù)圖象的對稱性
    (1)若函數(shù)y=f(x+a)是偶函數(shù),即f(a-x)=f(a+x),則函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱.
    (2)若對于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),則y=f(x)的圖象關(guān)于直線x=a對稱.
    (3)若函數(shù)y=f(x+b)是奇函數(shù),即f(-x+b)+f(x+b)=0,則函數(shù)y=f(x)關(guān)于點(b,0)中心對稱.

    三、 自主熱身、歸納總結(jié)
    1、對于定義在R上的函數(shù)f(x),給出下列說法:
    ①若f(x)是偶函數(shù),則f(-2)=f(2);
    ②若f(-2)=f(2),則函數(shù)f(x)是偶函數(shù);
    ③若f(-2)≠f(2),則函數(shù)f(x)不是偶函數(shù);
    ④若f(-2)=f(2),則函數(shù)f(x)不是奇函數(shù).
    其中,正確的說法是(A )
    A. ①③  B. ①④ C. ②③ D. ③④ 
    【答案】A
    【解析】 根據(jù)偶函數(shù)的定義,①③正確,若舉例奇函數(shù)
    由于f(-2)=f(2),∴②④都錯誤.故填寫①③.

    2、(2019·郴州第二次教學(xué)質(zhì)量檢測)已知f(x)是定義在[2b,1-b]上的偶函數(shù),且在[2b,0]上為增函數(shù),則f(x-1)≤f(2x)的解集為(  )
    A.        B.
    C.[-1,1] D.
    【答案】B
    【解析】 (1)∵f(x)是定義在[2b,1-b]上的偶函數(shù),∴2b+1-b=0,∴b=-1,
    ∵f(x)在[2b,0]上為增函數(shù),即函數(shù)f(x)在[-2,0]上為增函數(shù),故函數(shù)f(x)在(0,2]上為減函數(shù),則由f(x-1)≤f(2x),可得|x-1|≥|2x|,即(x-1)2≥4x2,
    解得-1≤x≤.
    又因為定義域為[-2,2],所以
    解得∴-1≤x≤.

    3、函數(shù)y=f(x)在[0,2]上單調(diào)遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是(  )
    A.f(1)

    英語朗讀寶
    資料下載及使用幫助
    版權(quán)申訴
    • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
    • 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時請及時更新
    • 3.資料下載成功后可在60天以內(nèi)免費重復(fù)下載
    版權(quán)申訴
    若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
    入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
    版權(quán)申訴二維碼
    高考專區(qū)
    • 精品推薦
    • 所屬專輯62份
    歡迎來到教習(xí)網(wǎng)
    • 900萬優(yōu)選資源,讓備課更輕松
    • 600萬優(yōu)選試題,支持自由組卷
    • 高質(zhì)量可編輯,日均更新2000+
    • 百萬教師選擇,專業(yè)更值得信賴
    微信掃碼注冊
    qrcode
    二維碼已過期
    刷新

    微信掃碼,快速注冊

    手機號注冊
    手機號碼

    手機號格式錯誤

    手機驗證碼 獲取驗證碼

    手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

    設(shè)置密碼

    6-20個字符,數(shù)字、字母或符號

    注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
    QQ注冊
    手機號注冊
    微信注冊

    注冊成功

    返回
    頂部