(一) 函數(shù)與導(dǎo)數(shù)中的高考熱點問題
[命題解讀] 1.函數(shù)是中學(xué)數(shù)學(xué)的核心內(nèi)容,導(dǎo)數(shù)是研究函數(shù)的重要工具,因此,函數(shù)與導(dǎo)數(shù)是歷年高考的重點與熱點.
2.常涉及的問題有:討論函數(shù)的單調(diào)性(求函數(shù)的單調(diào)區(qū)間)、求極值、求最值、求切線方程、求函數(shù)的零點或方程的根、求參數(shù)的范圍、證明不等式等.
3.涉及的數(shù)學(xué)思想有:函數(shù)與方程、分類討論、數(shù)形結(jié)合、轉(zhuǎn)化與化歸思想等,中、高檔難度均有.


利用導(dǎo)數(shù)研究函數(shù)的性質(zhì)

函數(shù)的單調(diào)性、極值是局部概念,函數(shù)的最值是整體概念,研究函數(shù)的性質(zhì)必須在定義域內(nèi)進行,因此,務(wù)必遵循定義域優(yōu)先的原則,本熱點主要有三種考查方式:(1)討論函數(shù)的單調(diào)性或求單調(diào)區(qū)間;(2)求函數(shù)的極值或最值;(3)利用函數(shù)的單調(diào)性、極值、最值,求參數(shù)的范圍.
【例1】 (2018·天津高考節(jié)選)設(shè)函數(shù)f(x)=(x-t1)(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差為d的等差數(shù)列.
(1)若t2=0,d=1,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若d=3,求f(x)的極值.
[解] (1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1,又因為曲線y=f(x)在點(0,f(0))處的切線方程為y-f(0)=f′(0)(x-0),故所求切線方程為x+y=0.
(2)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t-9)x-t+9t2.
故f′(x)=3x2-6t2x+3t-9.令f′(x)=0,解得x=t2-,或x=t2+.
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x
(-∞,t2-)
t2-
(t2-,t2+)
t2+
(t2+,+∞)
f′(x)

0

0

f(x)

極大值

極小值

所以函數(shù)f(x)的極大值為f(t2-)=(-)3-9×(-)=6;函數(shù)f(x)的極小值為f(t2+)=()3-9×=-6.
[規(guī)律方法] 1.研究函數(shù)的性質(zhì),必須在定義域內(nèi)進行,因此利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),應(yīng)遵循定義域優(yōu)先的原則.
2.討論函數(shù)的單調(diào)性,求函數(shù)的單調(diào)區(qū)間、極值問題,最終歸結(jié)到判斷f′(x)的符號問題上,而f′(x)>0或f′(x)<0,最終可轉(zhuǎn)化為一個一元一次不等式或一元二次不等式問題.
3.若已知f(x)的單調(diào)性,則轉(zhuǎn)化為不等式f′(x)≥0或f′(x)≤0在單調(diào)區(qū)間上恒成立問題求解.
(2019·合肥模擬)已知函數(shù)f(x)=aln x+x2-ax(a∈R).
(1)若x=3是f(x)的極值點,求f(x)的單調(diào)區(qū)間;
(2)求g(x)=f(x)-2x在區(qū)間[1,e]的最小值h(a).
[解] (1)f(x)的定義域為(0,+∞),
f′(x)=+2x-a=,
因為x=3是f(x)的極值點,
所以f′(3)==0,解得a=9.
所以f′(x)==,
所以當(dāng)0<x<或x>3時,f′(x)>0;
當(dāng)<x<3時,f′(x)<0.
所以f(x)的遞增區(qū)間為和(3,+∞),遞減區(qū)間為.
(2)由題知,g(x)=f(x)-2x=aln x+x2-ax-2x.
g′(x)=-2=.
①當(dāng)≤1,即a≤2時,g(x)在[1,e]上為增函數(shù),
h(a)=g(1)=-a-1;
②當(dāng)1<<e,即2<a<2e時,g(x)在上為減函數(shù),在上為增函數(shù),
h(a)=g=aln-a2-a;
③當(dāng)≥e,即a≥2e時,g(x)在[1,e]上為減函數(shù),
h(a)=g(e)=(1-e)a+e2-2e.
綜上,h(a)=


利用導(dǎo)數(shù)研究函數(shù)的零點問題

研究函數(shù)零點的本質(zhì)就是研究函數(shù)的極值的正負(fù),為此,我們可以通過討論函數(shù)的單調(diào)性來解決,求解時應(yīng)注重等價轉(zhuǎn)化與數(shù)形結(jié)合思想的應(yīng)用,其主要考查方式有:(1)確定函數(shù)的零點、圖像交點的個數(shù);(2)由函數(shù)的零點、圖像交點的情況求參數(shù)的取值范圍.

【例2】 (本小題滿分12分)(2018·全國卷Ⅱ)已知函數(shù)f(x)=x3-a(x2+x+1).
(1)若a=3,求f(x)的單調(diào)區(qū)間;
(2)證明:f(x)只有一個零點.
[信息提取] 看到(1)求單調(diào)區(qū)間,想到導(dǎo)數(shù)與單調(diào)性的關(guān)系;
看到(2)f(x)只有一個零點,想到f(x)的單調(diào)性及函數(shù)有零點的條件.
[規(guī)范解答] (1)當(dāng)a=3時,f(x)=x3-3x2-3x-3,f′(x)=x2-6x-3.
令f′(x)=0解得x=3-2或x=3+2. 2分
當(dāng)x∈(-∞,3-2)∪(3+2,+∞)時,f′(x)>0;
當(dāng)x∈(3-2,3+2)時,f′(x)0,所以f(x)=0等價于-3a=0. 7分
設(shè)g(x)=-3a,則g′(x)=≥0,僅當(dāng)x=0時g′(x)=0,所以g(x)在(-∞,+∞)遞增.
故g(x)至多有一個零點,從而f(x)至多有一個零點. 9分
又f(3a-1)=-6a2+2a-=-6a-2-0,故f(x)有一個零點. 11分
綜上,f(x)只有一個零點. 12分
[易錯與防范] 易錯誤區(qū):(1)把單調(diào)增區(qū)間用“∪”連接.
(2)作第(2)問時,直接求f′(x),導(dǎo)致無法求解.
(3)無法找到區(qū)間(m,n),使得f(m)f(n)<0.
防范措施:(1)單調(diào)區(qū)間不能用“∪”連接.
(2)求函數(shù)零點時,常利用f(x)=0,轉(zhuǎn)化函數(shù)的表現(xiàn)形式.
(3)在尋找m,n使得f(m)f(n)<0時,可通過多次嘗試獲得.
[通性通法] 利用導(dǎo)數(shù)研究函數(shù)零點的兩種常用方法
(1)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,借助零點存在性定理判斷;或用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,再用單調(diào)性和極值定位函數(shù)圖像求解零點問題.
(2)將零點問題轉(zhuǎn)化為函數(shù)圖像的交點問題,利用數(shù)形結(jié)合來解決.
(2019·武漢模擬)已知f(x)=ln x-x3+2ex2-ax,a∈R,其中e為自然對數(shù)的底數(shù).
(1)若f(x)在x=e處的切線的斜率為e2,求a;
(2)若f(x)有兩個零點,求a的取值范圍.
[解] (1)f′(x)=-3x2+4ex-a,
f′(e)=+e2-a=e2,∴a=.
(2)由ln x-x3+2ex2-ax=0,得-x2+2ex=a.
記F(x)=-x2+2ex,
則F′(x)=-2(x-e).
當(dāng)x∈(e,+∞)時,F(xiàn)′(x)<0,F(xiàn)(x)單調(diào)遞減.
當(dāng)x∈(0,e)時,F(xiàn)′(x)>0,F(xiàn)(x)單調(diào)遞增,
∴F(x)max=F(e)=+e2,
而x→0時,F(xiàn)(x)→-∞,
x→+∞時,F(xiàn)(x)→-∞.故a<+e2.


利用導(dǎo)數(shù)研究不等式問題

導(dǎo)數(shù)在不等式中的應(yīng)用是每年高考的必考內(nèi)容,且以解答題的形式考查,難度較大,屬中高檔題,突出轉(zhuǎn)化思想、函數(shù)思想的考查.常見的命題角度有:(1)證明不等式;(2)由不等式恒成立求參數(shù)范圍問題;(3)不等式恒成立、能成立問題.
【例3】 設(shè)函數(shù)f(x)=aln x+x2-bx(a≠1),曲線y=f(x)在點(1,f(1))處的切線斜率為0.
(1)求b;
(2)若存在x0≥1,使得f(x0)0,f(x)在(1,+∞)上遞增.
所以,存在x0≥1,使得f(x0)

英語朗讀寶
相關(guān)資料 更多
資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部