
1.集合{(x,y)|y=3x+1}表示( )
A.方程y=3x+1
B.點(x,y)
C.平面直角坐標(biāo)系中所有的點組成的集合
D.函數(shù)y=3x+1的圖象上的所有點組成的集合
2.設(shè)集合M={a2-a,0},若a∈M,則實數(shù)a的值為( )
A.0B.2C.2或0D.2或-2
3.已知集合M={y|y=x2},用自然語言描述M應(yīng)為( )
A.滿足y=x2的所有函數(shù)值y組成的集合
B.滿足y=x2的所有自變量x的取值組成的集合
C.函數(shù)y=x2圖象上的所有點組成的集合
D.滿足y=x的所有函數(shù)值y組成的集合
4.方程組x+y=3,x-y=-1的解集不可表示為( )
A.(x,y)x+y=3,x-y=-1B.(x,y)x=1,y=2
C.{1,2}D.{(1,2)}
5.已知集合M=a65-a∈N*,且a∈Z,則M等于( )
A.{2,3}B.{1,2,3,4}
C.{1,2,3,6}D.{-1,2,3,4}
6.一次函數(shù)y=2x與y=3x-2的圖象的交點組成的集合用列舉法表示為 .
7.設(shè)集合A={x|x2-3x+a=0},若4∈A,則集合A用列舉法表示為 .
8.設(shè)集合A={1,-2,a2-1},B={1,a2-3a,0},若A,B相等,則實數(shù)a= .
9.選擇適當(dāng)?shù)姆椒ū硎鞠铝屑?
(1)一年中有31天的月份組成的集合;
(2)由直線y=-x+4上的橫坐標(biāo)和縱坐標(biāo)都是自然數(shù)的點組成的集合.
10.已知集合A={x∈R|ax2+2x+1=0},其中a∈R.若1是集合A中的一個元素,請用列舉法表示集合A.
參考答案
1.集合{(x,y)|y=3x+1}表示( )
A.方程y=3x+1
B.點(x,y)
C.平面直角坐標(biāo)系中所有的點組成的集合
D.函數(shù)y=3x+1的圖象上的所有點組成的集合
解析:由集合描述法的定義可知,該集合表示函數(shù)y=3x+1的圖象上的所有點組成的集合.
答案:D
2.設(shè)集合M={a2-a,0},若a∈M,則實數(shù)a的值為( )
A.0B.2C.2或0D.2或-2
解析:∵集合M={a2-a,0},
∴a2-a≠0,即a≠0,且a≠1.
又a∈M,∴a=a2-a,解得a=2.故選B.
答案:B
3.已知集合M={y|y=x2},用自然語言描述M應(yīng)為( )
A.滿足y=x2的所有函數(shù)值y組成的集合
B.滿足y=x2的所有自變量x的取值組成的集合
C.函數(shù)y=x2圖象上的所有點組成的集合
D.滿足y=x的所有函數(shù)值y組成的集合
解析:由于集合M={y|y=x2}的代表元素是y,而y為函數(shù)y=x2的函數(shù)值,故選A.
答案:A
4.方程組x+y=3,x-y=-1的解集不可表示為( )
A.(x,y)x+y=3,x-y=-1B.(x,y)x=1,y=2
C.{1,2}D.{(1,2)}
答案:C
5.已知集合M=a65-a∈N*,且a∈Z,則M等于( )
A.{2,3}B.{1,2,3,4}
C.{1,2,3,6}D.{-1,2,3,4}
解析:因為集合M=a65-a∈N*,且a∈Z,
所以5-a可能為1,2,3,6,即a可能為4,3,2,-1.
所以M={-1,2,3,4},故選D.
答案:D
6.一次函數(shù)y=2x與y=3x-2的圖象的交點組成的集合用列舉法表示為 .
解析:(x,y)y=2x,y=3x-2={(2,4)}.
答案:{(2,4)}
7.設(shè)集合A={x|x2-3x+a=0},若4∈A,則集合A用列舉法表示為 .
解析:∵4∈A,
∴16-12+a=0,
∴a=-4,
∴A={x|x2-3x-4=0}={-1,4}.
答案:{-1,4}
8.設(shè)集合A={1,-2,a2-1},B={1,a2-3a,0},若A,B相等,則實數(shù)a= .
解析:由集合A,B相等,得a2-1=0,a2-3a=-2,解得a=1.
答案:1
9.選擇適當(dāng)?shù)姆椒ū硎鞠铝屑?
(1)一年中有31天的月份組成的集合;
(2)由直線y=-x+4上的橫坐標(biāo)和縱坐標(biāo)都是自然數(shù)的點組成的集合.
解:(1){1月,3月,5月,7月,8月,10月,12月}.
(2)用描述法表示該集合為{(x,y)|y=-x+4,x∈N,y∈N},或用列舉法表示該集合為{(0,4),(1,3),(2,2),(3,1),(4,0)}.
10.已知集合A={x∈R|ax2+2x+1=0},其中a∈R.若1是集合A中的一個元素,請用列舉法表示集合A.
解:因為1是集合A中的一個元素,
所以1是關(guān)于x的方程ax2+2x+1=0的一個根,
所以a·12+2×1+1=0,即a=-3.
方程即為-3x2+2x+1=0,
解這個方程,得x1=1,x2=-13,
所以集合A=-13,1.
這是一份人教A版 (2019)必修 第一冊1.2 集合間的基本關(guān)系第2課時課時作業(yè),共8頁。試卷主要包含了選擇題,解答題等內(nèi)容,歡迎下載使用。
這是一份2024講與練高中數(shù)學(xué)1(必修第一冊·A版)1.1 第2課時 集合的表示,共5頁。試卷主要包含了下列命題中正確的是等內(nèi)容,歡迎下載使用。
這是一份高中1.1 集合的概念當(dāng)堂達(dá)標(biāo)檢測題,文件包含11集合的概念原卷版-高中數(shù)學(xué)人教A版2019必修第一冊docx、11集合的概念解析版-高中數(shù)學(xué)人教A版2019必修第一冊docx等2份試卷配套教學(xué)資源,其中試卷共8頁, 歡迎下載使用。
注冊成功