裂項(xiàng)相消法求和
1.裂項(xiàng)相消法
裂項(xiàng)相消法的基本思想就是把通項(xiàng)an分拆成an=bn+k-bn(k≥1,k∈N*)的形式,從而在求和時(shí)達(dá)到某些項(xiàng)相消的目的,在解題時(shí)要善于根據(jù)這個(gè)基本思想變換數(shù)列{an}的通項(xiàng)公式,使之符合裂項(xiàng)相消的條件.主要適用于eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,anan+1)))或eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,anan+2)))(其中{an}為等差數(shù)列)等形式的數(shù)列求和.
1.常用的裂項(xiàng)公式
(1)若{an}是等差數(shù)列,則eq \f(1,anan+1)=eq \f(1,d)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,an)-\f(1,an+1))),eq \f(1,anan+2)=eq \f(1,2d)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,an)-\f(1,an+2)));
(2)eq \f(1,n(n+1))=eq \f(1,n)-eq \f(1,n+1),eq \f(1,n(n+k))=eq \f(1,k)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+k)));
(3)eq \f(1,(2n-1)(2n+1))=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1)));
(4)eq \f(1,n(n+1)(n+2))=eq \f(1,2)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,n(n+1))-\f(1,(n+1)(n+2))));
(5)eq \f(2n+1,n2?n+1?2)=eq \f(1,n2)-eq \f(1,(n+1)2)
(6)eq \f(1,\r(n)+\r(n+1))=eq \r(n+1)-eq \r(n),eq \f(1,\r(n)+\r(n+k))=eq \f(1,k)(eq \r(n+k)-eq \r(n));
(7)lgaeq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,n)))=lga(n+1)-lgan;
(8)eq \f(2n,?2n+1??2n+1+1?)=eq \f(1,2n+1)-eq \f(1,2n+1+1),eq \f(2n-k,?2n+1??2n+1+1?)=eq \f(1,2k)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n+1)-\f(1,2n+1+1)));
(9)eq \f(n+2,(n2+n)2n+1)=eq \f(1,n·2n)-eq \f(1,(n+1)2n+1);
(10)eq \f(k·2k+1,?k+1??k+2?)=eq \f(2k+2,k+2)-eq \f(2k+1,k+1);
(11) (-1)neq \f(n,(n-1)(n+1))=(-1)neq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n-1)+\f(1,n+1))).
注意:(1)裂項(xiàng)系數(shù)取決于前后兩項(xiàng)分母的差.
(2)在應(yīng)用裂項(xiàng)相消法時(shí),要注意消項(xiàng)的規(guī)律具有對(duì)稱性,即前剩多少項(xiàng)則后剩多少項(xiàng).
考點(diǎn)一 選填題
【基本題型】
[例1] (1)數(shù)列{an}的通項(xiàng)公式是an=eq \f(1,\r(n)+\r(n+1)),前n項(xiàng)和為9,則n等于( )
A.9 B.99 C.10 D.100
答案 B 解析 因?yàn)閍n=eq \f(1,\r(n)+\r(n+1))=eq \r(n+1)-eq \r(n),所以Sn=a1+a2+…+an=(eq \r(n+1)-eq \r(n))+(eq \r(n)-eq \r(n-1))+…+(eq \r(3)-eq \r(2))+(eq \r(2)-eq \r(1))=eq \r(n+1)-1,令eq \r(n+1)-1=9,得n=99.
(2)(2017·全國Ⅱ)等差數(shù)列{an}的前n項(xiàng)和為Sn,a3=3,S4=10,則eq \i\su(k=1,n, )eq \f(1,Sk)=________.
答案 eq \f(2n,n+1) 解析 設(shè)公差為d,則eq \b\lc\{\rc\ (\a\vs4\al\c1(a1+2d=3,,4a1+6d=10,))∴eq \b\lc\{\rc\ (\a\vs4\al\c1(a1=1,,d=1,))∴an=n.∴前n項(xiàng)和Sn=1+2+…+n=eq \f(n?n+1?,2),∴eq \f(1,Sn)=eq \f(2,n?n+1?)=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1))),∴eq \i\su(k=1,n, )eq \f(1,Sk)=2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)+\f(1,2)-\f(1,3)+…+\f(1,n)-\f(1,n+1)))=2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,n+1)))=2·eq \f(n,n+1)=eq \f(2n,n+1).
(3)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=9,a2為整數(shù),且Sn≤S5,則數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,anan+1)))的前9項(xiàng)和為_____.
答案 -eq \f(1,9) 解析 由Sn≤S5得eq \b\lc\{\rc\ (\a\vs4\al\c1(a5≥0,,a6≤0,))即eq \b\lc\{\rc\ (\a\vs4\al\c1(a1+4d≥0,,a1+5d≤0,))得-eq \f(9,4)≤d≤-eq \f(9,5),又a2為整數(shù),所以d=-2,an=a1+(n-1)×d=11-2n,eq \f(1,anan+1)=eq \f(1,d)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,an)-\f(1,an+1))),所以數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,anan+1)))的前n項(xiàng)和Tn=eq \f(1,d)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a1)-\f(1,a2)+\f(1,a2)-\f(1,a3)+…+\f(1,an)-\f(1,an+1)))=eq \f(1,d)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a1)-\f(1,an+1))),所以T9=-eq \f(1,2)×eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,9)-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,9)))))=-eq \f(1,9).
(4)定義各項(xiàng)為正數(shù)的數(shù)列{pn}的“美數(shù)”為eq \f(n,p1+p2+…+pn)(n∈N*).若各項(xiàng)為正數(shù)的數(shù)列{an}的“美數(shù)”eq \f(1,2n+1),且bn=eq \f(an+1,4),則eq \f(1,b1b2)+eq \f(1,b2b3)+…+eq \f(1,b2 021b2 022)=________.
答案 eq \f(2 021,2 022) 解析 因?yàn)楦黜?xiàng)為正數(shù)的數(shù)列{an}的“美數(shù)”為eq \f(1,2n+1),所以eq \f(n,a1+a2+…+an)=eq \f(1,2n+1),即Sn=n(2n+1),則Sn-1=(n-1)[2(n-1)+1]=2n2-3n+1(n≥2),所以an=Sn-Sn-1=4n-1(n≥2),又eq \f(1,a1)=eq \f(1,3),所以a1=3,滿足式子an=4n-1,所以an=4n-1(n∈N*).又bn=eq \f(an+1,4),所以bn=n,所以eq \f(1,b1b2)+eq \f(1,b2b3)+…+eq \f(1,b2 021b2 022)=eq \f(1,1×2)+eq \f(1,2×3)+…+eq \f(1,2 021×2022)=eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,3)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2 021)-\f(1,2 022)))=1-eq \f(1,2 022)=eq \f(2 021,2 022).
(5)若數(shù)列{an}滿足a1=1,且對(duì)于任意的n∈N*都有an+1=an+n+1,則eq \f(1,a1)+eq \f(1,a2)+…+eq \f(1,a2 021)+eq \f(1,a2 022)等于( )
A.eq \f(4 035,2 021) B.eq \f(2 016,2 022) C.eq \f(4 044,2 023) D.eq \f(4 035,2 024)
答案 C 解析 由an+1=an+n+1,得an+1-an=n+1,則a2-a1=1+1,a3-a2=2+1,a4-a3=3+1,…,an-an-1=(n-1)+1,以上等式相加,得an-a1=1+2+3+…+(n-1)+n-1,把a(bǔ)1=1代入上式得,an=1+2+3+…+(n-1)+n=eq \f(n?n+1?,2),eq \f(1,an)=eq \f(2,n?n+1?)=2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1))),則eq \f(1,a1)+eq \f(1,a2)+…+eq \f(1,a2 021)+eq \f(1,a2 022)=2eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,3)))+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2 021)-\f(1,2 022)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2 022)-\f(1,2 023)))))=2eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2 023)))=eq \f(4 044,2 023).
(6)已知數(shù)列{4n-2n}(n∈N*)的前n項(xiàng)和為Sn,bn=eq \f(2n,Sn),則數(shù)列{bn}的前n項(xiàng)和Tn=________.
答案 eq \f(3?2n-1?,2n+1-1) 解析 Sn=eq \f(4,3)×(22n-1)-2×(2n-1)=eq \f(2,3)×[2(2n+1)(2n-1)-3×(2n-1)]=eq \f(2,3)×(2n+1-1)(2n-1).所以bn=eq \f(2n,Sn)=eq \f(3,2)×eq \f(2n,?2n+1-1??2n-1?)=eq \f(3,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1-1))).所以Tn=eq \i\su(i=1,n,b)i=eq \f(3,2)eq \b\lc\[\rc\ (\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,21-1)-\f(1,22-1)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,22-1)-\f(1,23-1)))+…))eq \b\lc\ \rc\](\a\vs4\al\c1(+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1-1)))))=eq \f(3,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n+1-1)))=eq \f(3?2n-1?,2n+1-1).
(7)已知Sn為數(shù)列{an}的前n項(xiàng)和,an=2·3n-1(n∈N*),若bn=eq \f(an+1,SnSn+1),則b1+b2+…+bn=________.
答案 eq \f(1,2)-eq \f(1,3n+1-1) 解析 由an=2·3n-1可知數(shù)列{an}是以2為首項(xiàng),3為公比的等比數(shù)列,所以Sn=eq \f(2(1-3n),1-3)=3n-1,則bn=eq \f(an+1,SnSn+1)=eq \f(Sn+1-Sn,SnSn+1)=eq \f(1,Sn)-eq \f(1,Sn+1),則b1+b2+…+bn=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,S1)-\f(1,S2)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,S2)-\f(1,S3)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,Sn)-\f(1,Sn+1)))=eq \f(1,S1)-eq \f(1,Sn+1)=eq \f(1,2)-eq \f(1,3n+1-1).
【對(duì)點(diǎn)精練】
1.若數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,n2+n)))的前n項(xiàng)和為eq \f(10,11),則n的值為( )
A.9 B.10 C.11 D.12
2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a9=eq \f(1,2)a12+6,a2=4,則數(shù)列{eq \f(1,Sn)}的前10項(xiàng)和為( )
A.eq \f(11,12) B.eq \f(10,11) C.eq \f(9,10) D.eq \f(8,9)
3.在數(shù)列{an}中,an=eq \f(1,n+1)+eq \f(2,n+1)+…+eq \f(n,n+1),又bn=eq \f(2,anan+1),則數(shù)列{bn}的前n項(xiàng)和為________.
4.已知數(shù)列{an}滿足:an+1=an(1-2an+1),a1=1,數(shù)列{bn}滿足:bn=an·an+1,則數(shù)列{bn}的前2 017項(xiàng)
的和S2 017=________.
5.在等差數(shù)列{an}中,a3+a5+a7=6,a11=8,則數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an+3·an+4)))的前n項(xiàng)和為( )
A.eq \f(n+1,n+2) B.eq \f(n,n+2) C.eq \f(n,n+1) D.eq \f(2n,n+1)
6.設(shè)數(shù)列{(n2+n)an}是等比數(shù)列,且a1=eq \f(1,6),a2=eq \f(1,54),則數(shù)列{3nan}的前15項(xiàng)和為________.
7.已知數(shù)列{an}滿足:an+1=an(1-2an+1),a1=1,數(shù)列{bn}滿足:bn=an·an+1,則數(shù)列{bn}的前2 017項(xiàng)
的和S2 022=________.
8.已知數(shù)列{an}滿足2a1+22a2+…+2nan=n(n∈N*),數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,lg2anlg2an+1)))的前n項(xiàng)和為Sn,則
S1·S2·S3·…·S10=( )
A.eq \f(1,10) B.eq \f(1,5) C.eq \f(1,11) D.eq \f(2,11)
9.已知數(shù)列{an}的通項(xiàng)公式為an=eq \f(1,?n+1?\r(n)+n\r(n+1))(n∈N*),其前n項(xiàng)和為Sn,則在數(shù)列S1,S2,…,
S2 020中,有理數(shù)項(xiàng)的項(xiàng)數(shù)為( )
A.42 B.43 C.44 D.45
10.已知數(shù)列{an}:eq \f(1,2),eq \f(1,3)+eq \f(2,3),eq \f(1,4)+eq \f(2,4)+eq \f(3,4),…,eq \f(1,10)+eq \f(2,10)+eq \f(3,10)+…+eq \f(9,10),…,若bn=eq \f(1,anan+1),那么數(shù)列{bn}的前
n項(xiàng)和Sn為( )
A.eq \f(n,n+1) B.eq \f(4n,n+1) C.eq \f(3n,n+1) D.eq \f(5n,n+1)
11.已知函數(shù)f(x)=xα的圖象過點(diǎn)(4,2),令an=eq \f(1,f(n+1)+f(n)),n∈N*.記數(shù)列{an}的前n項(xiàng)和為Sn,則S2 019
=( )
A.eq \r(2 018)-1 B.eq \r(2 019)-1 C.eq \r(2 020)-1 D.eq \r(2 020)+1
12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2+4n,若首項(xiàng)為eq \f(1,3)的數(shù)列{bn}滿足eq \f(1,bn+1)-eq \f(1,bn)=an,則數(shù)列{bn}
的前10項(xiàng)和為( )
A.eq \f(175,264) B.eq \f(39,88) C.eq \f(173,264) D.eq \f(181,264)
考點(diǎn)二 解答題
1.a(chǎn)n=eq \f(1,n(n+k))型
【基本題型】
[例2] 各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=8,且2a1,a3,3a2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=eq \f(1,nlg2an),求{bn}的前n項(xiàng)和Sn.
解析 (1)設(shè)等比數(shù)列{an}的公比為q(q>0).∵2a1,a3,3a2成等差數(shù)列,∴2a3=2a1+3a2,
即2a1q2=2a1+3a1q,∴2q2-3q-2=0,解得q=2或q=-eq \f(1,2)(舍去),∴an=8×2n-1=2n+2.
(2)由(1)可得bn=eq \f(1,nlg22n+2)=eq \f(1,n(n+2))=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+2))),
∴Sn=b1+b2+b3+…+bn=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)+\f(1,2)-\f(1,4)+\f(1,3)-\f(1,5)+…+\f(1,n)-\f(1,n+2)))
=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,2)-\f(1,n+1)-\f(1,n+2)))=eq \f(3,4)-eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n+1)+\f(1,n+2)))=eq \f(3,4)-eq \f(2n+3,2(n+1)(n+2)).
[例3] 已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=eq \f(1,2)Sn+1eq \b\lc\(\rc\)(\a\vs4\al\c1(n∈N*)).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=lg2an,cn=eq \f(1,bnbn+1),且數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn的取值范圍.
解析 (1)當(dāng)n=1時(shí),a1=eq \f(1,2)S1+1,解得a1=2,當(dāng)n≥2時(shí),an-1=eq \f(1,2)Sn-1+1,①,an=eq \f(1,2)Sn+1,②
②-①,得an-an-1=eq \f(1,2)an,即an=2an-1,
∴數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,即an=2n.
(2)bn=lg2an=lg22n=n,cn=eq \f(1,bnbn+1)=eq \f(1,n(n+1))=eq \f(1,n)-eq \f(1,n+1),
Tn=eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,3)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)-\f(1,4)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1)))=1-eq \f(1,n+1),
∵n∈N*,∴eq \f(1,n+1)∈eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(1,2))),∴Tn∈eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(1,2),1)).
[例4] 在數(shù)列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.
(1)求證:數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是等差數(shù)列;
(2)求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))的前n項(xiàng)和Sn.
解析 (1)nan+1-(n+1)an=2n2+2n的兩邊同時(shí)除以n(n+1),得eq \f(an+1,n+1)-eq \f(an,n)=2(n∈N*),
所以數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是首項(xiàng)為4,公差為2的等差數(shù)列.
(2)由(1),得eq \f(an,n)=2n+2,所以an=2n2+2n,
故eq \f(1,an)=eq \f(1,2n2+2n)=eq \f(1,2)·eq \f((n+1)-n,n(n+1))=eq \f(1,2)·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1))),
所以Sn=eq \f(1,2)eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,3)))+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+1)))))=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,n+1)))=eq \f(n,2(n+1)).
[例5] 已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=an+n2-1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)定義x=[x]+,其中[x]為實(shí)數(shù)x的整數(shù)部分,為x的小數(shù)部分,且0≤<1,記cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.
解析 (1)因?yàn)镾n=an+n2-1(n∈N*),
則當(dāng)n≥2時(shí),an=Sn-Sn-1=an+n2-1-[an-1+(n-1)2-1],
整理得an-1=2n-1(n≥2),所以an=2n+1(n∈N*).
(2)由(1)知Sn=n2+2n,所以eq \f(anan+1,Sn)=eq \f((2n+1)(2n+3),n2+2n)=eq \f(4n2+8n+3,n2+2n)=4+eq \f(3,n2+2n).
所以當(dāng)n=1時(shí),c1==0.當(dāng)n≥2時(shí),易知0<eq \f(3,n2+2n)<1,
則cn=eq \f(3,n2+2n)=eq \f(3,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+2))).
所以Tn=c1+c2+c3+…+cn=0+eq \f(3,2)eq \b\lc\[(\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,4)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)-\f(1,5)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)-\f(1,6)))+…))eq \b\lc\ \rc\](\a\vs4\al\c1(+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n-1)-\f(1,n+1)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n)-\f(1,n+2)))))
=eq \f(3,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)+\f(1,3)-\f(1,n+1)-\f(1,n+2)))=eq \f(5n2+3n-8,4n2+12n+8).
【對(duì)點(diǎn)精練】
13.已知數(shù)列{an}是正項(xiàng)等比數(shù)列,滿足2a3+a4=a5,a1+a2=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)tn=lg2(3an),求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,tn+1tn+2)))的前n項(xiàng)和Tn.
14.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,已知S3=a7,a8-2a3=3.
(1)求an;
(2)設(shè)bn=eq \f(1,Sn),求數(shù)列{bn}的前n項(xiàng)和Tn.
15.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=-an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若f(x)=x,設(shè)bn=f(a1)+f(a2)+…+f(an),求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,bn)))的前n項(xiàng)和Tn.
16.已知首項(xiàng)為2的數(shù)列{an}的前n項(xiàng)和為Sn,Sn=eq \f(an+1-2,3),設(shè)bn=lg2an.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)判斷數(shù)列{bn}是否為等差數(shù)列,并說明理由;
(3)求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(4,?bn+1??bn+3?)))的前n項(xiàng)和Tn.
17.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且(t+1)Sn=aeq \\al(2,n)+3an+2(t∈R).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,bn+1-bn=an+1,求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,2bn+7n)))的前n項(xiàng)和Tn.
2.a(chǎn)n=eq \f(1,(n+k)(n+k+1))型
【基本題型】
[例6] 已知數(shù)列{an}滿足a1=eq \f(1,2),且an+1=eq \f(2an,2+an).
(1)求證:數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是等差數(shù)列;
(2)若bn=anan+1,求數(shù)列{bn}的前n項(xiàng)和Sn.
解析 (1)易知an≠0,∵an+1=eq \f(2an,2+an),∴eq \f(1,an+1)=eq \f(2+an,2an),∴eq \f(1,an+1)-eq \f(1,an)=eq \f(1,2),
又∵a1=eq \f(1,2),∴eq \f(1,a1)=2,∴數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是以2為首項(xiàng),eq \f(1,2)為公差的等差數(shù)列.
(2)由(1)知,eq \f(1,an)=2+eq \f(1,2)(n-1)=eq \f(n+3,2),即an=eq \f(2,n+3),
∴bn=eq \f(4,(n+3)(n+4))=4eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n+3)-\f(1,n+4))),
Sn=4eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)-\f(1,5)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,5)-\f(1,6)))+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,n+3)-\f(1,n+4)))))=4eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)-\f(1,n+4)))=eq \f(n,n+4).
【對(duì)點(diǎn)精練】
18.正項(xiàng)等差數(shù)列{an}滿足a1=4,且a2,a4+2,2a7-8成等比數(shù)列,{an}的前n項(xiàng)和為Sn.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=eq \f(1,Sn+2),求數(shù)列{bn}的前n項(xiàng)和Tn.
3.a(chǎn)n=eq \f(1,(2n-1)(2n+1))型
【基本題型】
[例7] 已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a2=3,S4=16,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=eq \f(1,anan+1),求數(shù)列{bn}的前n項(xiàng)和Tn.
解析 (1)設(shè)數(shù)列{an}的公差為d,∵a2=3,S4=16,∴a1+d=3,4a1+6d=16,
解得a1=1,d=2.∴an=2n-1.
(2)由題意知,bn=eq \f(1,(2n-1)(2n+1))=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1))),
∴Tn=b1+b2+…+bn=eq \f(1,2)eq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)))+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)-\f(1,5)))+…+\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1)))))=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n+1)))=eq \f(n,2n+1).
[例8] (2017·全國Ⅲ)設(shè)數(shù)列{an}滿足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通項(xiàng)公式;
(2)求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,2n+1)))的前n項(xiàng)和.
解析 (1)因?yàn)閍1+3a2+…+(2n-1)an=2n,故當(dāng)n≥2時(shí),a1+3a2+…+(2n-3)an-1=2(n-1).
兩式相減,得(2n-1)an=2,所以an=eq \f(2,2n-1)(n≥2).又由題設(shè)可得a1=2,滿足上式,
所以{an}的通項(xiàng)公式為an=eq \f(2,2n-1).
(2) 記eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,2n+1)))的前n項(xiàng)和為Sn,由(1)知eq \f(an,2n+1)=eq \f(2,(2n+1)(2n-1))=eq \f(1,2n-1)-eq \f(1,2n+1),
則Sn=eq \f(1,1)-eq \f(1,3)+eq \f(1,3)-eq \f(1,5)+…+eq \f(1,2n-1)-eq \f(1,2n+1)=eq \f(2n,2n+1).
[例9] 已知在數(shù)列{an}中,a1=1,a2=2,an+1=3an-2an-1(n≥2,n∈N*).設(shè)bn=an+1-an.
(1)證明:數(shù)列{bn}是等比數(shù)列;
(2)設(shè)cn=eq \f(bn,?4n2-1?2n),求數(shù)列{cn}的前n項(xiàng)和Sn.
解析 (1)因?yàn)閍n+1=3an-2an-1(n≥2,n∈N*),bn=an+1-an,
所以eq \f(bn+1,bn)=eq \f(an+2-an+1,an+1-an)=eq \f(3an+1-2an-an+1,an+1-an)=eq \f(2?an+1-an?,an+1-an)=2,
又b1=a2-a1=2-1=1,所以數(shù)列{bn}是以1為首項(xiàng),2為公比的等比數(shù)列.
(2)由(1)知bn=1×2n-1=2n-1,因?yàn)閏n=eq \f(bn,?4n2-1?2n),
所以cn=eq \f(1,2?2n+1??2n-1?)=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)-\f(1,2n+1))),
所以Sn=c1+c2+…+cn=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,3)+\f(1,3)-\f(1,5)+…+\f(1,2n-1)-\f(1,2n+1)))=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,2n+1)))=eq \f(n,4n+2).
【對(duì)點(diǎn)精練】
19.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且S3=2S2+4,a5=36.
(1)求an,Sn;
(2)設(shè)bn=Sn-1(n∈N*),Tn=eq \f(1,b1)+eq \f(1,b2)+eq \f(1,b3)+…+eq \f(1,bn),求Tn.
20.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-n(n∈N*).
(1)證明:{an+1}是等比數(shù)列;
(2)若數(shù)列bn=lg2(an+1),求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,b2n-1·b2n+1)))的前n項(xiàng)和Tn.
21.已知數(shù)列{an}為等比數(shù)列,a1=1;數(shù)列{bn}滿足b2=3,a1b1+a2b2+a3b3+…+anbn=3+(2n-3)·2n.
(1)求an;
(2)求eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,bnbn+1)))的前n項(xiàng)和Tn.
22.已知二次函數(shù)f(x)=ax2+bx的圖象過點(diǎn)(-4n,0),且f′(0)=2n,n∈N*,數(shù)列{an}滿足eq \f(1,an+1)=f′eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,an))),
且a1=4.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=eq \r(anan+1),求數(shù)列{bn}的前n項(xiàng)和Tn.
4.a(chǎn)n=eq \f(1,(2n+1)(2n+3))型
【基本題型】
[例10] (2015·全國Ⅰ)Sn為數(shù)列{an}的前n項(xiàng)和.已知an>0,aeq \\al(2,n)+2an=4Sn+3.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=eq \f(1,anan+1),求數(shù)列{bn}的前n項(xiàng)和.
解析 (1)由aeq \\al(2,n)+2an=4Sn+3,①,可知aeq \\al(2,n+1)+2an+1=4Sn+1+3.②
②-①,得aeq \\al(2,n+1)-aeq \\al(2,n)+2(an+1-an)=4an+1,
即2(an+1+an)=aeq \\al(2,n+1)-aeq \\al(2,n)=(an+1+an)(an+1-an).
由an>0,得an+1-an=2.又aeq \\al(2,1)+2a1=4a1+3,
解得a1=-1(舍去)或a1=3.
所以{an}是首項(xiàng)為3,公差為2的等差數(shù)列,通項(xiàng)公式為an=2n+1.
(2)由an=2n+1可知bn=eq \f(1,anan+1)=eq \f(1,?2n+1??2n+3?)=eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n+1)-\f(1,2n+3))).
設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,則
Tn=b1+b2+…+bn=eq \f(1,2)[eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)-\f(1,5)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,5)-\f(1,7)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n+1)-\f(1,2n+3)))]=eq \f(n,3?2n+3?).
【對(duì)點(diǎn)精練】
23.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=n2+2n,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,anan+1)))的前n項(xiàng)和.
24.已知數(shù)列{an}滿足a1+4a2+42a3+…+4n-1an=eq \f(n,4)(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=eq \f(4nan,2n+1),求數(shù)列{bnbn+1}的前n項(xiàng)和Tn.
5.a(chǎn)n=eq \f(2n+1,n2?n+1?2)型
【基本題型】
[例11] 正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn滿足:Seq \\al(2,n)-(n2+n-1)Sn-(n2+n)=0.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令bn=eq \f(n+1,?n+2?2a\\al(2,n)),求數(shù)列{bn}的前n項(xiàng)和為Tn.
解析 (1)由Seq \\al(2,n)-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0.
由于{an}是正項(xiàng)數(shù)列,所以Sn>0,Sn=n2+n.于是a1=S1=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.
綜上,數(shù)列{an}的通項(xiàng)公式為an=2n.
(2)由于an=2n,故bn=eq \f(n+1,?n+2?2a\\al(2,n))=eq \f(n+1,4n2?n+2?2)=eq \f(1,16)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,n2)-\f(1,?n+2?2))).
Tn=eq \f(1,16)eq \b\lc\[\rc\ (\a\vs4\al\c1(1-\f(1,32)+\f(1,22)-\f(1,42)+\f(1,32)-\f(1,52)+…+\f(1,?n-1?2)-\f(1,?n+1?2)+))eq \b\lc\ \rc\](\a\vs4\al\c1(\f(1,n2)-\f(1,?n+2?2)))
=eq \f(1,16)eq \b\lc\[\rc\](\a\vs4\al\c1(1+\f(1,22)-\f(1,?n+1?2)-\f(1,?n+2?2))).
【對(duì)點(diǎn)精練】
25.已知數(shù)列{an}滿足a1=4,且當(dāng)n≥2時(shí),(n-1)an=n(an-1+2n-2).
(1)求證:數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(an,n)))是等差數(shù)列;
(2)記bn=eq \f(2n+1,a\\al(2,n)),求數(shù)列{bn}的前n項(xiàng)和Sn.
26.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立,bn=-1-lg2|an|,數(shù)列{bn}
的前n項(xiàng)和為Tn,cn=eq \f(bn+1,TnTn+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{cn}的前n項(xiàng)和An,并求出An的最值.
6.a(chǎn)n=lgaeq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(1,n)))型
【基本題型】
[例12] 在數(shù)列{an}中,a1=1,an+1·an=an-an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=lgeq \f(an+2,an),求數(shù)列{bn}的前n項(xiàng)和Sn.
解析 (1)由題意得eq \f(1,an+1)-eq \f(1,an)=1.又因?yàn)閍1=1,所以eq \f(1,a1)=1.
所以數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(1,an)))是首項(xiàng)為1,公差為1的等差數(shù)列,所以eq \f(1,an)=n,即an=eq \f(1,n),
所以數(shù)列{an}的通項(xiàng)公式為an=eq \f(1,n).
(2)由(1)得bn=lg n-lg(n+2).
所以Sn=lg 1-lg 3+lg 2-lg 4+lg 3-lg 5+…+lg(n-2)-lg n+lg(n-1)-lg(n+1)+lg n-lg(n+2)
=lg 1+lg 2-lg(n+1)-lg(n+2)=lgeq \f(2,?n+1??n+2?).
7.a(chǎn)n=eq \f(2n,?2n+1??2n+1+1?)型
【基本題型】
[例13] 已知數(shù)列{an},{bn},其中a1=3,b1=-1,且滿足an=eq \f(1,2)(3an-1-bn-1),bn=-eq \f(1,2)(an-1-3bn-1),n∈N*,n≥2.
(1)求證:數(shù)列{an-bn}為等比數(shù)列;
(2)求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(2n,anan+1)))的前n項(xiàng)和Tn.
解析 (1)an-bn=eq \f(1,2)(3an-1-bn-1)-eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))(an-1-3bn-1)=2(an-1-bn-1),
又a1-b1=3-(-1)=4,所以{an-bn}是首項(xiàng)為4,公比為2的等比數(shù)列.
(2)由(1)知,an-bn=2n+1,①
又an+bn=eq \f(1,2)(3an-1-bn-1)+eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2)))(an-1-3bn-1)=an-1+bn-1,又a1+b1=3+(-1)=2,
所以{an+bn}為常數(shù)數(shù)列,an+bn=2,②
聯(lián)立①②得,an=2n+1,
eq \f(2n,anan+1)=eq \f(2n,?2n+1??2n+1+1?)=eq \f(1,2n+1)-eq \f(1,2n+1+1),
所以Tn=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,21+1)-\f(1,22+1)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,22+1)-\f(1,23+1)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n+1)-\f(1,2n+1+1)))
=eq \f(1,21+1)-eq \f(1,2n+1+1)=eq \f(1,3)-eq \f(1,2n+1+1)(n∈N*).
[例14] 已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2=8,Sn=eq \f(an+1,2)-n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(2×3n,anan+1)))的前n項(xiàng)和Tn.
解析 (1)∵a2=8,Sn=eq \f(an+1,2)-n-1,∴a1=S1=eq \f(a2,2)-2=2,
當(dāng)n≥2時(shí),an=Sn-Sn-1=eq \f(an+1,2)-n-1-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(an,2)-n)),即an+1=3an+2,又a2=8=3a1+2,
∴an+1=3an+2,n∈N*,∴an+1+1=3(an+1),
∴數(shù)列{an+1}是等比數(shù)列,且首項(xiàng)為a1+1=3,公比為3,
∴an+1=3×3n-1=3n,∴an=3n-1.
(2)∵eq \f(2×3n,anan+1)=eq \f(2×3n,?3n-1??3n+1-1?)=eq \f(1,3n-1)-eq \f(1,3n+1-1).
∴數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(2×3n,anan+1)))的前n項(xiàng)和
Tn=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3-1)-\f(1,32-1)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,32-1)-\f(1,33-1)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3n-1)-\f(1,3n+1-1)))=eq \f(1,2)-eq \f(1,3n+1-1).
點(diǎn)評(píng):本例第(1)問在求解通項(xiàng)公式時(shí)運(yùn)用了構(gòu)造法,形如an+1=λan+μ的數(shù)列遞推關(guān)系求通項(xiàng)公式都可以采用此法;第(2)問運(yùn)用了裂項(xiàng)相消法求和,bn=eq \f((q-1)an,(an+k)(an+1+k))=eq \f(1,an+k)-eq \f(1,an+1+k).
【對(duì)點(diǎn)精練】
27.?dāng)?shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=eq \f(an,SnSn+1),求數(shù)列{bn}的前n項(xiàng)和Tn.
28.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2=8,Sn=eq \f(an+1,2)-n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列eq \b\lc\{\rc\}(\a\vs4\al\c1(\f(2×3n,anan+1)))的前n項(xiàng)和Tn.
29.已知數(shù)列{an}中,a1=1,a2=2,an+1+2an-1=3an(n≥2),數(shù)列{an}的前n項(xiàng)和為Sn.
(1)求an;
(2)設(shè)bn=eq \f(Sn+1,Sn·Sn+1)(n∈N*),Tn=b1+b2+…+bn,求Tn.
8.a(chǎn)n=eq \f(n+2,(n2+n)2n+1)或eq \f(k·2k+1,?k+1??k+2?)型
【基本題型】
[例15] (2018·天津)設(shè){an}是等比數(shù)列,公比大于0,其前n項(xiàng)和為Sn(n∈N*),{bn}是等差數(shù)列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.
(1)求{an}和{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{Sn}的前n項(xiàng)和為Tn(n∈N*),
①求Tn;②證明:eq \i\su(k=1,n, )eq \f(?Tk+bk+2?bk,?k+1??k+2?)=eq \f(2n+2,n+2)-2(n∈N*).
解析 (1)設(shè)等比數(shù)列{an}的公比為q.由a1=1,a3=a2+2,可得q2-q-2=0.
由q>0,可得q=2,故an=2n-1.
設(shè)等差數(shù)列{bn}的公差為d.由a4=b3+b5,可得b1+3d=4.
由a5=b4+2b6,可得3b1+13d=16,從而b1=1,d=1,故bn=n.
所以數(shù)列{an}的通項(xiàng)公式為an=2n-1(n∈N*),數(shù)列{bn}的通項(xiàng)公式為bn=n(n∈N*).
(2)①由(1)得Sn=eq \f(1-2n,1-2)=2n-1,
故Tn=eq \i\su(k=1,n, )(2k-1)=eq \i\su(k=1,n,2)k-n=eq \f(2×?1-2n?,1-2)-n=2n+1-n-2(n∈N*).
②因?yàn)閑q \f(?Tk+bk+2?bk,?k+1??k+2?)=eq \f(?2k+1-k-2+k+2?k,?k+1??k+2?)=eq \f(k·2k+1,?k+1??k+2?)=eq \f(2k+2,k+2)-eq \f(2k+1,k+1),
所以eq \i\su(k=1,n, )eq \f(?Tk+bk+2?bk,?k+1??k+2?)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(23,3)-\f(22,2)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(24,4)-\f(23,3)))+…+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2n+2,n+2)-\f(2n+1,n+1)))=eq \f(2n+2,n+2)-2(n∈N*).
【對(duì)點(diǎn)精練】
29.已知各項(xiàng)都是正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且2Sn=aeq \\al(2,n)+an,數(shù)列{bn}滿足b1=eq \f(1,2),2bn+1=bn+eq \f(bn,an).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足cn=eq \f(bn+2,Sn),求c1+c2+…+cn.
9.a(chǎn)n=(-1)neq \f(n,(n-1)(n+1))型
【基本題型】
[例16] 已知遞增的等差數(shù)列{an}的前n項(xiàng)和為Sn,S1=1,S2,S3-1,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=eq \f(?-1?n?4n+4?,an+1an+2),求數(shù)列{bn}的前2n項(xiàng)和T2n.
解析 (1)由S1=1知等差數(shù)列{an}的首項(xiàng)為1,所以Sn=n+eq \f(n?n-1?,2)d,
由S2,S3-1,S4成等比數(shù)列可得(S3-1)2=S2S4,所以(2+3d)2=(2+d)(4+6d),解得d=2或d=-eq \f(2,3),
由等差數(shù)列{an}為遞增數(shù)列知,d>0,所以d=2,所以an=1+2(n-1)=2n-1.
(2)因?yàn)閎n=eq \f(?-1?n?4n+4?,an+1an+2)=eq \f(?-1?n?4n+4?,?2n+1??2n+3?)=(-1)neq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n+1)+\f(1,2n+3))),
所以T2n=b1+b2+b3+b4+…+b2n-1+b2n
=-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)+\f(1,5)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,5)+\f(1,7)))-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,7)+\f(1,9)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,9)+\f(1,11)))+…-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4n-1)+\f(1,4n+1)))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4n+1)+\f(1,4n+3)))
=-eq \f(1,3)+eq \f(1,4n+3)=-eq \f(4n,3?4n+3?).
[例17] 已知數(shù)列{an}為各項(xiàng)非零的等差數(shù)列,其前n項(xiàng)和為Sn,滿足S2n-1=aeq \\al(2,n).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=eq \f(n,anan+1)(-1)n,求數(shù)列{bn}的前n項(xiàng)和Tn.
解析 (1)S2n-1=eq \f((2n-1)(a1+a2n-1),2)=an(2n-1)=aeq \\al(2,n),∵an≠0,∴an=2n-1(n∈N*).
(2)bn=eq \f(n,anan+1)(-1)n=eq \f(n,(2n-1)(2n+1))(-1)n=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2n-1)+\f(1,2n+1)))(-1)n,
當(dāng)n為偶數(shù)時(shí)Tn=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,1)-\f(1,3)+\f(1,3)+\f(1,5)-\f(1,5)-\f(1,7)+…+\f(1,2n-1)+\f(1,2n+1)))=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,1)+\f(1,2n+1)))=eq \f(-n,4n+2),
當(dāng)n為奇數(shù)時(shí)Tn=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,1)-\f(1,3)+\f(1,3)+\f(1,5)-\f(1,5)-\f(1,7)+…-\f(1,2n-1)-\f(1,2n+1)))=eq \f(1,4)eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,1)-\f(1,2n+1)))=eq \f(-n-1,4n+2).
所以Tn=eq \b\lc\{(\a\vs4\al\c1(-\f(n,4n+2),n為偶數(shù),,-\f(n+1,4n+2),n為奇數(shù).))
【對(duì)點(diǎn)精練】
30.在公差不為0的等差數(shù)列{an}中,aeq \\al(2,2)=a3+a6,且a3為a1與a11的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(-1)neq \f(n,\b\lc\(\rc\)(\a\vs4\al\c1(an-\f(1,2)))\b\lc\(\rc\)(\a\vs4\al\c1(an+1-\f(1,2))))(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
31.已知數(shù)列{an}滿足a1=1,Sn=eq \f((n+1)an,2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=(-1)n+1eq \f(2an+1,anan+1),數(shù)列{bn}的前n項(xiàng)和為Tn,求T2 021.

相關(guān)試卷

高考數(shù)學(xué)一輪復(fù)習(xí)全套word講義專題09數(shù)列求和方法之裂項(xiàng)相消法(原卷版+解析):

這是一份高考數(shù)學(xué)一輪復(fù)習(xí)全套word講義專題09數(shù)列求和方法之裂項(xiàng)相消法(原卷版+解析),共41頁。試卷主要包含了單選題,解答題,填空題等內(nèi)容,歡迎下載使用。

【專項(xiàng)復(fù)習(xí)】高考數(shù)學(xué)專題06 數(shù)列求和(裂項(xiàng)相消法)(題型訓(xùn)練).zip:

這是一份【專項(xiàng)復(fù)習(xí)】高考數(shù)學(xué)專題06 數(shù)列求和(裂項(xiàng)相消法)(題型訓(xùn)練).zip,文件包含專項(xiàng)復(fù)習(xí)高考數(shù)學(xué)專題06數(shù)列求和裂項(xiàng)相消法題型訓(xùn)練原卷版docx、專項(xiàng)復(fù)習(xí)高考數(shù)學(xué)專題06數(shù)列求和裂項(xiàng)相消法題型訓(xùn)練解析版docx等2份試卷配套教學(xué)資源,其中試卷共35頁, 歡迎下載使用。

2024年新高考數(shù)學(xué)培優(yōu)專練09 數(shù)列求和方法之裂項(xiàng)相消法(原卷版+解析):

這是一份2024年新高考數(shù)學(xué)培優(yōu)專練09 數(shù)列求和方法之裂項(xiàng)相消法(原卷版+解析),文件包含專題09數(shù)列求和方法之裂項(xiàng)相消法原卷版docx、專題09數(shù)列求和方法之裂項(xiàng)相消法教師版docx等2份試卷配套教學(xué)資源,其中試卷共41頁, 歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

數(shù)列求和(裂項(xiàng)相消法)(典型題型歸類訓(xùn)練)(原卷及解析版)

數(shù)列求和(裂項(xiàng)相消法)(典型題型歸類訓(xùn)練)(原卷及解析版)

14數(shù)列求和-裂項(xiàng)相消法求和-【數(shù)列專題】2024屆高考數(shù)學(xué)重要模型專練(全國通用)

14數(shù)列求和-裂項(xiàng)相消法求和-【數(shù)列專題】2024屆高考數(shù)學(xué)重要模型專練(全國通用)

2022年新高考數(shù)學(xué)二輪提升數(shù)列專題第8講《數(shù)列求和裂項(xiàng)相消法》(2份打包,解析版+原卷版)

2022年新高考數(shù)學(xué)二輪提升數(shù)列專題第8講《數(shù)列求和裂項(xiàng)相消法》(2份打包,解析版+原卷版)

專題09 利用裂項(xiàng)相消法數(shù)列求和(原卷版)

專題09 利用裂項(xiàng)相消法數(shù)列求和(原卷版)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部