1. 已知集合,,且,則實(shí)數(shù)______.
2. 已知扇形的半徑是3,弧長(zhǎng)為6,則扇形圓心角的弧度數(shù)是__________.
3. 已知點(diǎn)是角終邊上一點(diǎn),若,則_________.
4. 已知,向量與的夾角為.向量在方向上的數(shù)量投影為________.
5. 已知直線,若,則實(shí)數(shù)的值為______.
6. 若有兩個(gè)復(fù)數(shù),滿足,則_________.
7. 重慶是一座魔幻都市,有著豐富的旅游資源.甲、乙兩人相約來(lái)到重慶旅游,兩人分別從四個(gè)景點(diǎn)中隨機(jī)選擇一個(gè)景點(diǎn)游覽,甲、乙兩人恰好選擇同一景點(diǎn)的概率為______.
8. 若,則_________.
9. 已知函數(shù)值域是,則實(shí)數(shù)的取值范圍是_________.
10. 中國(guó)剪紙是一種用剪刀或刻刀在紙上剪刻花紋的中國(guó)古老民間藝術(shù)之一.已知某剪紙的裁剪工藝如下:取一張半徑為1的圓形紙片,記為,在內(nèi)作內(nèi)接正方形,接著在該正方形內(nèi)作內(nèi)切圓,記為,并裁剪去該正方形與內(nèi)切圓之間的部分(如圖所示陰影部分),記為一次裁剪操作,,不斷重復(fù)上述裁剪操作,則被裁剪部分的面積之和的極限為_________.
11. 為雙曲線右支上兩不同點(diǎn),則取值范圍_________.
12. ,和的零點(diǎn)按從小到大順序可以分別構(gòu)成兩個(gè)等差數(shù)列,則所構(gòu)成的集合為_________.
二、選擇題(本題共4小題,前2題每小題4分;后2題每小題5分,共18分)
13. 在中,若,則的形狀是
A. 鈍角三角形B. 直角三角形
C. 銳角三角形D. 不能確定
14. 將某學(xué)校一次物理測(cè)試學(xué)生的成績(jī)統(tǒng)計(jì)如下圖所示,則估計(jì)本次物理測(cè)試學(xué)生成績(jī)的平均分為(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)( )
A. 68B. 70C. 72D. 74
15. 設(shè)與是兩個(gè)不同的冪函數(shù),記,則中的元素個(gè)數(shù)的可能是( ).
A. 0、1、2、B. 1、2、3C. 1、2、3、4D. 0、1、2、3
16. 已知定圓,點(diǎn)A是圓所在平面內(nèi)一定點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),若線段的中垂線交直線于點(diǎn),則點(diǎn)的軌跡可能是:(1)橢圓;(2)雙曲線;(3)拋物線;(4)圓;(5)直線;(6)一個(gè)點(diǎn).其中所有可能的結(jié)果有( ).
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
三、解答題.(本大題共5小題,滿分78分)
17. 如圖所示五面體中,四邊形為長(zhǎng)方形,平面和是全等的等邊三角形.

(1)求證:;
(2)若已知,求該五面體體積.
18 設(shè),,(常數(shù)).
(1)y=fx為上的嚴(yán)格增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若對(duì)于任意,,都有fx1?fx2>4x1?x2成立,求實(shí)數(shù)的取值范圍.
19. 仰暉樓有A、B兩部電梯.已知電梯每上一層需要5秒,電梯在某層樓停留時(shí)開門到關(guān)門所花時(shí)間為10秒(人員均能在電梯開關(guān)門時(shí)間內(nèi)完成進(jìn)出電梯和按樓層等操作).某天清晨,樓上還沒(méi)有人,1樓已經(jīng)有若干人均欲乘坐電梯上樓,目的地分別是樓.現(xiàn)兩部電梯均恰好在1樓(兩部電梯互相獨(dú)立運(yùn)行,可以獨(dú)立開關(guān)門,在1樓按下按鈕后將同時(shí)打開門),且每部電梯容量足夠容納所有人.定義為:從A(B)電梯開門時(shí)刻算起,到電梯內(nèi)最后一人到達(dá)目標(biāo)樓層后A(B)電梯門關(guān)閉為止,所花時(shí)間.記"運(yùn)輸完成時(shí)間".
(1)若所有人均乘坐一部電梯,求;
(2)為了研究的最小值,我們需要對(duì)電梯的"乘坐安排"作出一些合理假設(shè).例如:假設(shè)兩部電梯都有人乘坐.理由:分開乘坐,比如去2層的人都坐電梯A,其余人坐電梯B,則均小于(1)中,故"運(yùn)輸完成時(shí)間"也小于(1)中,所以要使得最小,兩部電梯一定都有人乘坐.請(qǐng)你在此基礎(chǔ)上再提出1至2條關(guān)于電梯"乘坐安排"的合理假設(shè),并簡(jiǎn)述作出這些假設(shè)的理由(若有多條假設(shè),請(qǐng)按重要性從高到低寫出最重要的兩條);
(3)求出最小值.
20. 如圖,已知橢圓經(jīng)過(guò)點(diǎn),離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓上任意點(diǎn)軸上一點(diǎn),若的最小值為,求實(shí)數(shù)的取值范圍;
(3)設(shè)是經(jīng)過(guò)右焦點(diǎn)的任一弦(不經(jīng)過(guò)點(diǎn)),直線與直線相交于點(diǎn),記的斜率分別為,求證:成等差數(shù)列.
21. 已知y=fx是定義在上的函數(shù),滿足恒成立.數(shù)列滿足:,.
(1)若函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)y=fx是上的減函數(shù),求證:對(duì)任意正實(shí)數(shù),均存在,使得時(shí),均有;
(3)求證:"函數(shù)y=fx是上的增函數(shù)"是"存在,使得"的充分非必要條件.
【附加題】(共10分)
22. 世界上除了圓形輪子之外,還有一些好事之徒制作了不少形狀的多邊形輪子.
(1)如圖,平面直角坐標(biāo)系內(nèi)有一個(gè)邊長(zhǎng)為1的正方形,其初始位置為,,,D0,1.
①將整個(gè)正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)首次旋轉(zhuǎn)到軸正半軸上停止:
②再將整個(gè)正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)首次選擇到軸正半軸上停止;
③再將整個(gè)正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)首次選擇到軸正半軸上停止;
④再將整個(gè)正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)首次選擇到軸正半軸上停止.
我們將上述四個(gè)步驟依次操作一遍,稱為將正方形“滾動(dòng)”一周.
為使點(diǎn)向軸正方向移動(dòng)100個(gè)單位長(zhǎng)度,需要將正方形“滾動(dòng)”______周,在這個(gè)過(guò)程中,點(diǎn)經(jīng)過(guò)的路徑總長(zhǎng)度為______個(gè)單位長(zhǎng)度;
(2)如果制造一個(gè)正邊形的“輪子”,該正邊形的中心到任意一個(gè)頂點(diǎn)的距離為1,并將該正邊形的“輪子”滾動(dòng)一周,求點(diǎn)經(jīng)過(guò)的路徑總長(zhǎng)度;
(3)根據(jù)(2)中結(jié)果猜想:半徑為1的圓形輪子在平地上滾動(dòng)一周,則圓周上任意一點(diǎn)經(jīng)過(guò)的路徑總長(zhǎng)度是多少?(不必說(shuō)明理由)

相關(guān)試卷

2024-2025學(xué)年上海市靜安區(qū)高三上冊(cè)11月期中數(shù)學(xué)檢測(cè)試卷:

這是一份2024-2025學(xué)年上海市靜安區(qū)高三上冊(cè)11月期中數(shù)學(xué)檢測(cè)試卷,共4頁(yè)。

2024-2025學(xué)年上海靜安區(qū)高三上冊(cè)11月期中數(shù)學(xué)檢測(cè)試卷(附解析):

這是一份2024-2025學(xué)年上海靜安區(qū)高三上冊(cè)11月期中數(shù)學(xué)檢測(cè)試卷(附解析),共22頁(yè)。試卷主要包含了填空題,選擇題,解答題.等內(nèi)容,歡迎下載使用。

上海市靜安區(qū)2024-2025學(xué)年高三數(shù)學(xué)一模試卷+答案(靜安區(qū)一模):

這是一份上海市靜安區(qū)2024-2025學(xué)年高三數(shù)學(xué)一模試卷+答案(靜安區(qū)一模),共8頁(yè)。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

2024-2025學(xué)年上海市靜安區(qū)高三上學(xué)期期中考數(shù)學(xué)檢測(cè)試卷(含解析)

2024-2025學(xué)年上海市靜安區(qū)高三上學(xué)期期中考數(shù)學(xué)檢測(cè)試卷(含解析)

2024~2025學(xué)年上海靜安區(qū)上海市民立中學(xué)高一(上)期中數(shù)學(xué)試卷(學(xué)習(xí)質(zhì)量檢測(cè))[原題+解析]

2024~2025學(xué)年上海靜安區(qū)上海市民立中學(xué)高一(上)期中數(shù)學(xué)試卷(學(xué)習(xí)質(zhì)量檢測(cè))[原題+解析]

2024~2025學(xué)年上海靜安區(qū)上海市民立中學(xué)高二(上)期中數(shù)學(xué)試卷(學(xué)習(xí)質(zhì)量檢測(cè))[原題+解析]

2024~2025學(xué)年上海靜安區(qū)上海市民立中學(xué)高二(上)期中數(shù)學(xué)試卷(學(xué)習(xí)質(zhì)量檢測(cè))[原題+解析]

2024屆上海靜安區(qū)高三二模數(shù)學(xué)試卷及答案

2024屆上海靜安區(qū)高三二模數(shù)學(xué)試卷及答案

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期中專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部