一.選擇題(每題3分,共30分)
1.下列電視臺(tái)標(biāo)志中,是中心對(duì)稱圖形的是( )
A.B.C.D.
2.若x<y成立,則下列不等式成立的是( )
A.4x<3yB.﹣x<﹣yC.>D.x+6<y+6
3.下列因式分解正確的是( )
A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2
C.a(chǎn)2﹣a=a(a﹣1)D.a(chǎn)2+2a+1=a(a+2)+1
4.不等式x﹣1≥0的解集在數(shù)軸上表示正確的是( )
A.B.
C.D.
5.以下選項(xiàng)不能判定△ABC為直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.AB:BC:AC=3:4:5D.AB=13,BC=5,AC=12
6.如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=10,將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)得到△A'B'C,此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( )
A.10B.20C.10D.10
7.關(guān)于x的不等式組恰好有3個(gè)整數(shù)解,則a滿足( )
A.a(chǎn)=10B.10≤a<12C.10<a≤12D.10≤a≤12
8.如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交AC,AB于點(diǎn)M,N,再分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線AP交邊BC于點(diǎn)D,點(diǎn)E為線段AB上一動(dòng)點(diǎn).若AC=15,CD=4,當(dāng)DE最小時(shí),△ADE的面積是( )
A.15B.30C.45D.60
9.如圖,函數(shù)y1=﹣2x與y2=ax+3的圖象相交于點(diǎn)A(m,2),則關(guān)于x的不等式ax+3>﹣2x>0的解集是( )
A.x>﹣1B.﹣1<x<0C.x<﹣1D.x>2
10.一副三角板如圖擺放,點(diǎn)F是45°角三角板ABC的斜邊的中點(diǎn),AC=4.當(dāng)30°角三角板DEF的直角頂點(diǎn)繞著點(diǎn)F旋轉(zhuǎn)時(shí),直角邊DF,EF分別與AC,BC相交于點(diǎn)M,N.在旋轉(zhuǎn)過(guò)程中有以下結(jié)論:①M(fèi)F=NF:②四邊形CMFN有可能為正方形;③MN長(zhǎng)度的最小值為2;④四邊形CMFN的面積保持不變;⑤△CMN面積的最大值為2.其中正確的個(gè)數(shù)是( )
A.2B.3C.4D.5
二.填空題(每題3分,共15分)
11.點(diǎn)A(4,2)先向右平移4個(gè)單位,再向下平移1個(gè)單位后的坐標(biāo)為 .
12.因式分解:4x3﹣16x= .
13.若點(diǎn)A(6﹣2x,x﹣5)在平面直角坐標(biāo)系的第二象限內(nèi),則x的取值范圍是 .
14.如圖,在△ABC中,AB=AC=5,BC=6,AD=4,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是 .
15.如圖,點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=2,PB=1.5,PC=2.5,則∠APB的度數(shù)為 .
三.解答題(共55分)
16.(6分)解不等式組:.
17.(6分)利用因式分解計(jì)算:(1)22024﹣22023;
(2)已知:x+y=1,求x2+xy+y2的值.
18.(7分)如圖,△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A1B1C1,并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使得PA+PB的值最小,直接寫(xiě)出點(diǎn)P的坐標(biāo).
19.(8分)如圖,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,若BD=CD,BE=CF.
(1)求證:AD平分∠BAC;
(2)請(qǐng)猜想AB+AC與AE之間的數(shù)量關(guān)系,并給予證明.
20.(8分)近年來(lái),預(yù)制菜消費(fèi)持續(xù)升溫,它既滿足了消費(fèi)者的需要,也不斷拓展著飲食行業(yè)的發(fā)展.某餐飲平臺(tái)計(jì)劃推出A和B兩種預(yù)制菜品,已知售出1份菜品A和2份菜品B可獲利35元,售出2份菜品A和3份菜品B可獲利60元.
(1)求每份菜品A、B的利潤(rùn);
(2)根據(jù)銷售情況,該餐飲平臺(tái)每日都能售完A、B兩種菜品共1000份,且菜品A的數(shù)量不高于菜品B數(shù)量的,應(yīng)該如何進(jìn)貨才能使總利潤(rùn)最高?最高利潤(rùn)是多少?
21.(10分)如圖,在平面直角坐標(biāo)系xOy中,△ABC,A(﹣2,6),B(﹣5,1),C(3,1).點(diǎn)B與點(diǎn)C關(guān)于直線l對(duì)稱,直線l與BC,AC的交點(diǎn)分別為點(diǎn)D,E.
(1)求點(diǎn)A到BC的距離;
(2)連接BE,補(bǔ)全圖形并求△ABE的面積;
(3)若位于x軸上方的點(diǎn)P在直線l上,∠BPC=90°,直接寫(xiě)出點(diǎn)P的坐標(biāo).
22.(10分)如圖,已知等邊△ABC的邊長(zhǎng)為6cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn) A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為ts,已知點(diǎn)M的速度1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),點(diǎn)M的位置在 ;當(dāng)M、N運(yùn)動(dòng)秒時(shí),點(diǎn)N追上點(diǎn)M;
(2)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形△AMN?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.
(3)當(dāng)△AMN為直角三角形時(shí),運(yùn)動(dòng)時(shí)間t的值是 .
參考答案與試題解析
一.選擇題
1.下列電視臺(tái)標(biāo)志中,是中心對(duì)稱圖形的是( )
A.B.C.D.
【解答】解:A、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;
B、是中心對(duì)稱圖形,故本選項(xiàng)正確;
C、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;
D、不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.
故選:B.
2.若x<y成立,則下列不等式成立的是( )
A.4x<3yB.﹣x<﹣yC.>D.x+6<y+6
【解答】解:A、由x<y,無(wú)法比較4x<3y,故此選項(xiàng)錯(cuò)誤;
B、∵x<y,∴﹣x>﹣y,故此選項(xiàng)錯(cuò)誤;
C、∵x<y,∴<,故此選項(xiàng)錯(cuò)誤;
D、∵x<y,∴x+6<y+6,故此選項(xiàng)正確.
故選:D.
3.下列因式分解正確的是( )
A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2
C.a(chǎn)2﹣a=a(a﹣1)D.a(chǎn)2+2a+1=a(a+2)+1
【解答】解:A、m2+n2無(wú)法分解因式,故此選項(xiàng)錯(cuò)誤;
B、x2+2x﹣1無(wú)法分解因式,故此選項(xiàng)錯(cuò)誤;
C、a2﹣a=a(a﹣1),正確;
D、a2+2a+1=(a+1)2,故此選項(xiàng)錯(cuò)誤;
故選:C.
4.不等式x﹣1≥0的解集在數(shù)軸上表示正確的是( )
A.B.
C.D.
【解答】解:∵x﹣1≥0,解得:x≥1,
∴不等式的解集在數(shù)軸上表示為:
故選:D.
5.以下選項(xiàng)不能判定△ABC為直角三角形的是( )
A.∠A:∠B:∠C=2:3:5B.∠A:∠B:∠C=3:4:5
C.AB:BC:AC=3:4:5D.AB=13,BC=5,AC=12
【解答】解:A、設(shè)∠A=2x°,∠B=3x°,∠C=5x°,
2x+3x+5x=180,解得x=18,則5x°=90°,
∴△ABC是直角三角形,故此選項(xiàng)不符合題意;
B、設(shè)∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得x=15,則5x°=75°,
∴△ABC不是直角三角形,故此選項(xiàng)符合題意;
C、∵32+42=52,∴能構(gòu)成直角三角形,故此選項(xiàng)不符合題意;
D、∵52+122=132,∴能構(gòu)成直角三角形,故此選項(xiàng)不符合題意.故選:B.
6.如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=10,將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)得到△A'B'C,此時(shí)點(diǎn)A'恰好在AB邊上,則點(diǎn)B'與點(diǎn)B之間的距離為( )
A.10B.20C.10D.10
【解答】解:如圖,連接BB',
∵將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)得到△A'B'C,
∴∠BCB'=∠ACA',CB=CB',CA=CA',
∵∠A=60°,
∴△ACA'是等邊三角形,
∴∠ACA'=60°,
∴∠BCB'=60°,
∴△BCB'是等邊三角形,
∴BB'=BC,
在Rt△ABC中,AB=2AC=20,
∴BC=,
∴BB'=10,
故選:D.
7.關(guān)于x的不等式組恰好有3個(gè)整數(shù)解,則a滿足( )
A.a(chǎn)=10B.10≤a<12C.10<a≤12D.10≤a≤12
【解答】解:由6﹣3x<0得:x>2,
由2x≤a得:,
∵不等式組恰好有3個(gè)整數(shù)解,
∴不等式組的整數(shù)解為3、4、5,
∴,解得10≤a<12,
故選:B.
8.如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交AC,AB于點(diǎn)M,N,再分別以點(diǎn)M,N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線AP交邊BC于點(diǎn)D,點(diǎn)E為線段AB上一動(dòng)點(diǎn).若AC=15,CD=4,點(diǎn)E在AB上.當(dāng)DE最小時(shí),△ADE的面積是( )
A.15B.30C.45D.60
【解答】解:∵點(diǎn)E為線段AB上的一個(gè)動(dòng)點(diǎn),DE最短,
∴DE⊥AB,
由基本尺規(guī)作圖可知,AD是△ABC的角平分線,
∵∠C=90°,
∴DC⊥AC,
∵DE⊥AB,DC⊥AC,
∴DE=DC=4,
∵∠C=∠AED=90°,AD=AD,
∴Rt△ACD≌Rt△AED(HL),
∴AE=AC=15,
∴△ADE的面積=AE?DE=×15×4=30,
故選:B.
9.如圖,函數(shù)y1=﹣2x與y2=ax+3的圖象相交于點(diǎn)A(m,2),則關(guān)于x的不等式ax+3>﹣2x>0的解集是( )
A.x>﹣1B.﹣1<x<0C.x<﹣1D.x>2
【解答】解:∵函數(shù)y1=﹣2x與y2=ax+3的圖象相交于點(diǎn)A(m,2),
∴2=﹣2m,
解得:m=﹣1,
∴關(guān)于x的不等式ax+3>﹣2x>0的解集是:﹣1<x<0.
故選:B.
10.一副三角板如圖擺放,點(diǎn)F是45°角三角板ABC的斜邊的中點(diǎn),AC=4.當(dāng)30°角三角板DEF的直角頂點(diǎn)繞著點(diǎn)F旋轉(zhuǎn)時(shí),直角邊DF,EF分別與AC,BC相交于點(diǎn)M,N.在旋轉(zhuǎn)過(guò)程中有以下結(jié)論:①M(fèi)F=NF:②四邊形CMFN有可能為正方形;③MN長(zhǎng)度的最小值為2;④四邊形CMFN的面積保持不變;⑤△CMN面積的最大值為2.其中正確的個(gè)數(shù)是( )
A.2B.3C.4D.5
【解答】解:①連接CF,
∵F為AB中點(diǎn),AC=BC,∠ACB=90°,
∴AF=BF=CF,CF⊥AB,
∴∠AFM+∠CFM=90°.
∵∠DFE=90°,∠CFM+∠CFN=90°,
∴∠AFM=∠CFN.
同理,∵∠A+∠MCF=90°,∠MCF+∠FCN=90°,
∴∠A=∠FCN,
在△AMF與△CNF中,∵,∴△AMF≌△CNF(ASA),∴MF=NF.故①正確;
②當(dāng)MF⊥AC時(shí),四邊形MFNC是矩形,此時(shí)MA=MF=MC,根據(jù)鄰邊相等的矩形是正方形可知②正確;
③連接MN,當(dāng)M為AC的中點(diǎn)時(shí),CM=CN,根據(jù)邊長(zhǎng)為4知CM=CN=2,此時(shí)MN最小,最小值為2,故③錯(cuò)誤;
④當(dāng)M、N分別為AC、BC中點(diǎn)時(shí),四邊形CDFE是正方形.
∵△ADF≌△CEF,
∴S△CEF=S△AMF
∴S四邊形CDFE=S△AFC.
故④正確;
⑤由于△MNF是等腰直角三角形,因此當(dāng)DM最小時(shí),DN也最小;
即當(dāng)DF⊥AC時(shí),DM最小,此時(shí)DN=BC=2.
∴DN=DN=2 ;
當(dāng)△CEF面積最大時(shí),此時(shí)△DEF的面積最?。?br>此時(shí)S△CMN=S四邊形CFMN﹣S△FMN=S△AFC﹣S△DEF=4﹣2=2,
故⑤正確.
故選:C.
二.填空題(共5小題)
11.點(diǎn)A(4,2)先向右平移4個(gè)單位,再向下平移1個(gè)單位后的坐標(biāo)為 (8,1) .
【解答】解:點(diǎn)A(4,2)先向右平移4個(gè)單位,再向下平移1個(gè)單位后的坐標(biāo)為(4+4,2﹣1),
即:(8,1).
故答案為:(8,1).
12.因式分解:4x3﹣16x= 4x(x+2)(x﹣2) .
【解答】解:原式=4x(x2﹣4)
=4x(x+2)(x﹣2).
故答案為:4x(x+2)(x﹣2).
13.若點(diǎn)A(6﹣2x,x﹣5)在平面直角坐標(biāo)系的第二象限內(nèi),則x的取值范圍是 x>5 .
【解答】解:∵點(diǎn)A(6﹣2x,x﹣5)在第二象限,
∴,
解得:x>5.
故答案為:x>5.
14.如圖,在△ABC中,AB=AC=5,BC=6,AD=4,AD是∠BAC的平分線.若P,Q分別是AD和AC上的動(dòng)點(diǎn),則PC+PQ的最小值是 .
【解答】解:∵AB=AC,AD是∠BAC的平分線,
∴AD垂直平分BC,
∴BP=CP.
過(guò)點(diǎn)B作BQ⊥AC于點(diǎn)Q,BQ交AD于點(diǎn)P,則此時(shí)PC+PQ取最小值,最小值為BQ的長(zhǎng),如圖所示.
∵S△ABC=BC?AD=AC?BQ,
∴BQ===.
故答案為:.
15.如圖,點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=2,PB=1.5,PC=2.5,則∠APB的度數(shù)為 150° .
【解答】解:如圖,將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°后得到的△BEA.
∴△PBC≌△EBA,
∴PB=EB,∠EBP=∠ABC=60°,
∴△PBE為等邊三角形,
∴PE=PB=1.5,∠EPB=60°,
∵AE=PC=2.5,PA=2,
∴PE2+AP2=AE2,
∴△APE為直角三角形,
∴∠APE=90°,
∴∠APB=90°+60°=150°;
故答案為:150°
三.解答題
16.解不等式組:.
【解答】解:,
由①得:x≤,
由②得:x>﹣1,
則不等式組的解集為﹣1<x≤.
17.利用因式分解計(jì)算:(1)22024﹣22023;
(2)已知x+y=1,求x2+xy+y2的值.
【解答】解:(1)原式=22023;
(2)x2+xy+y2
=(x2+2xy+y2)
=(x+y)2,
當(dāng)x+y=1時(shí),
原式=×12=.
18.如圖,△ABC三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A1B1C1,并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使得PA+PB的值最小,直接寫(xiě)出點(diǎn)P的坐標(biāo).
【解答】解:(1)如圖,△A1B1C1為所作,A1(﹣1,﹣1),B1(﹣4,﹣2),C1(﹣3,﹣4).
(2)如圖,P點(diǎn)坐標(biāo)為(2,0).
19.如圖,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,若BD=CD,BE=CF.
(1)求證:AD平分∠BAC;
(2)請(qǐng)猜想AB+AC與AE之間的數(shù)量關(guān)系,并給予證明.
【解答】(1)證明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
在Rt△DBE和Rt△DCF中,

∴Rt△DBE≌Rt△DCF(HL),
∴DE=DF,
∵DE⊥AB,DF⊥AC,
∴AD平分∠BAC.
(2)解:AB+AC=2AE,證明如下:
在Rt△ADE和Rt△ADF中,

∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF,
∴AB+AC=AB+AF+CF=AB+AE+BE=2AE.
20.近年來(lái),預(yù)制菜消費(fèi)持續(xù)升溫,它既滿足了消費(fèi)者的需要,也不斷拓展著飲食行業(yè)的發(fā)展.某餐飲平臺(tái)計(jì)劃推出A和B兩種預(yù)制菜品,已知售出1份菜品A和2份菜品B可獲利35元,售出2份菜品A和3份菜品B可獲利60元.
(1)求每份菜品A、B的利潤(rùn);
(2)根據(jù)銷售情況,該餐飲平臺(tái)每日都能售完A、B兩種菜品共1000份,且菜品A的數(shù)量不高于菜品B數(shù)量的,應(yīng)該如何進(jìn)貨才能使總利潤(rùn)最高?最高利潤(rùn)是多少?
【解答】解:(1)設(shè)每份菜品A的利潤(rùn)為x元,每份菜品B的利潤(rùn)為y元,
根據(jù)題意得,
解得,
答:每份菜品A的利潤(rùn)為15元,每份菜品B的利潤(rùn)為10元;
(2)設(shè)購(gòu)進(jìn)A菜品m份,總利潤(rùn)為w元,
根據(jù)題意得m≤(1000﹣m),
解得m≤600,
w=15m+10(1000﹣m)=5m+10000,
∵5>0,
∴w隨著m的增大而增大,
當(dāng)m=600時(shí),w取得最大值,最大值為13000元,
1000﹣600=400(份),
答:購(gòu)進(jìn)A菜品600份,B菜品400份,所獲利潤(rùn)最大,最大利潤(rùn)為13000元.
21.如圖,在平面直角坐標(biāo)系xOy中,△ABC,A(﹣2,6),B(﹣5,1),C(3,1).點(diǎn)B與點(diǎn)C關(guān)于直線l對(duì)稱,直線l與BC,AC的交點(diǎn)分別為點(diǎn)D,E.
(1)求點(diǎn)A到BC的距離;
(2)連接BE,補(bǔ)全圖形并求△ABE的面積;
(3)若位于x軸上方的點(diǎn)P在直線l上,∠BPC=90°,直接寫(xiě)出點(diǎn)P的坐標(biāo).
【解答】解:(1)∵A(﹣2,6),B(﹣5,1),C(3,1).
∴點(diǎn)A到BC的距離為5;
(2)如圖即為補(bǔ)全的圖形,
∵△ABE的面積=△ABC的面積﹣△BEC的面積=8×5﹣8×4=4;
(3)由(2)可知:位于x軸上方的點(diǎn)P與點(diǎn)E重合,
因?yàn)镈E=DC=DB=4,
所以△BDE和△CDE是等腰直角三角形,
所以此時(shí)∠BEC=∠BPC=90°,
所以點(diǎn)P的坐標(biāo)為(﹣1,4).
22.如圖,已知等邊△ABC的邊長(zhǎng)為6cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn) A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為ts,已知點(diǎn)M的速度1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),點(diǎn)M的位置在 BC的中點(diǎn) ;當(dāng)M、N運(yùn)動(dòng)秒時(shí),點(diǎn)N追上點(diǎn)M;
(2)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形△AMN?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.
(3)當(dāng)△AMN為直角三角形時(shí),運(yùn)動(dòng)時(shí)間t的值是 或或或9 .
【解答】解:(1)當(dāng)點(diǎn) N 第一次到達(dá) B 點(diǎn)時(shí),,
此時(shí)M運(yùn)動(dòng)了1×9=9( cm),∴點(diǎn)M的位置在線段BC的中點(diǎn),
設(shè)點(diǎn)M、N運(yùn)動(dòng)x秒后,M、N兩點(diǎn)重合,x×1+6=2x,解得x=6,
即當(dāng)M、N運(yùn)動(dòng)6秒時(shí),點(diǎn)N追上點(diǎn)M.
故答案為:BC的中點(diǎn);
(2)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),可以得到以MN為底邊的等腰三角形,
由(1)知6秒時(shí)M、N兩點(diǎn)重合,恰好在C處,
如圖2,假設(shè)△AMN是等腰三角形,∴AN=AM,
∴∠AMN=∠ANM.∴∠AMC=∠ANB,
∵△ACB是等邊三角形,∴∠C=∠B,AB=AC,
在△ACM和△ABN中,∵∠AMC=∠ANB,∠C=∠B,AC=AB
∴△ACM≌△ABN,∴CM=BN,
∴t﹣6=18﹣2t,解得t=8,符合題意.
所以假設(shè)成立,當(dāng)M、N運(yùn)動(dòng)8秒時(shí),能得到以MN為底的等腰三角形;
(3)當(dāng)點(diǎn)N在AB上運(yùn)動(dòng)時(shí),如圖3,
若∠AMN=90°,∵BN=2t,AM=t,∴AN=6﹣2t,
∵∠A=60°,∴2AM=AN,即2t=6﹣2t,解得.
如圖4,當(dāng)∠ANM=90°,
同理可得:由2AN=AM得2(6﹣2t)=t,解得;
當(dāng)點(diǎn)N在AC上運(yùn)動(dòng)時(shí),點(diǎn)M也在AC上,此時(shí)A,M,N不能構(gòu)成三角形:
當(dāng)點(diǎn)N在BC上運(yùn)動(dòng)時(shí),
如圖5,當(dāng)點(diǎn)N位于BC中點(diǎn)處時(shí),由△ABC為等邊三角形知AN⊥BC,
即△AMN是直角三角形,
則2t=6+6+3,解得.
如圖6,當(dāng)點(diǎn)M位于BC中點(diǎn)處時(shí),由△ABC時(shí)等邊三角形知AM⊥BC,即△AMN是直角三角形,
則t=6+3=9;
綜上,當(dāng)t=或或或9時(shí),可得到直角三角形△AMN.
故答案為:或或或9.

相關(guān)試卷

2023-2024學(xué)年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(含解析):

這是一份2023-2024學(xué)年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(含解析),共20頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試卷:

這是一份2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試卷,共17頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

精品解析:2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試題:

這是一份精品解析:2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試題,文件包含精品解析2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試題原卷版docx、精品解析2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試題解析版docx等2份試卷配套教學(xué)資源,其中試卷共32頁(yè), 歡迎下載使用。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

2023-2024學(xué)年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(含解析)

2023-2024學(xué)年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校九年級(jí)(上)月考數(shù)學(xué)試卷(10月份)(含解析)

廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校2023-2024學(xué)年上學(xué)期九年級(jí)10月月考數(shù)學(xué)試卷

廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校2023-2024學(xué)年上學(xué)期九年級(jí)10月月考數(shù)學(xué)試卷

精品解析:廣東省深圳市光明實(shí)驗(yàn)學(xué)校、公明中學(xué)、光明二中、勤誠(chéng)達(dá)學(xué)校、鳳凰實(shí)驗(yàn)學(xué)校2022-2023學(xué)年九年級(jí)上學(xué)期11月聯(lián)考數(shù)學(xué)試卷

精品解析:廣東省深圳市光明實(shí)驗(yàn)學(xué)校、公明中學(xué)、光明二中、勤誠(chéng)達(dá)學(xué)校、鳳凰實(shí)驗(yàn)學(xué)校2022-2023學(xué)年九年級(jí)上學(xué)期11月聯(lián)考數(shù)學(xué)試卷

2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試題(含解析)

2023年廣東省深圳市光明區(qū)勤誠(chéng)達(dá)學(xué)校中考數(shù)學(xué)三模試題(含解析)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期中專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部