1.下列四個圖形分別是四屆國際數(shù)學(xué)家大會的會標(biāo),其中是軸對稱圖形的是( )
A. B. C. D.
2.根據(jù)下列已知條件,能確定的形狀和大小的是( )
A. ,,
B. ,,
C. ,,
D. ,,
3.下列幾種說法:①全等三角形的對應(yīng)邊和對應(yīng)角相等;②面積相等的兩個三角形全等;③周長相等的兩個三角形全等;④全等的兩個三角形一定重合.其中正確的是( )
A. ①②B. ②③C. ③④D. ①④
4.如圖,等腰三角形ABC中,,,于D,則等于( )
A.
B.
C.
D.
5.在正方形網(wǎng)格中,的位置如圖所示,且頂點在格點上,在內(nèi)部有E、F、G、H四個格點,到三個頂點距離相等的點是( )
A. 點E
B. 點F
C. 點G
D. 點H
6.如圖,在中,,,AD是邊BC上的中線,則AD長的取值范圍是( )
A. B. C. D.
7.如圖,,BP和CP分別平分和,AD過點P,且與AB垂直.若點P到BC的距離是4,則AD的長為( )
A. 8
B. 6
C. 4
D. 2
8.如圖,D是中BC邊上一點,,則和的關(guān)系是( )
A. B. C. D.
9.如圖,鈍角中,,,,過三角形一個頂點的一條直線可將分成兩個三角形.若分成的兩個三角形中有一個三角形為等腰三角形,則這樣的直線有條.
A. 5B. 6C. 7D. 8
10.如圖,四邊形ABCD中,,點B關(guān)于AC的對稱點恰好落在CD上,若,則的度數(shù)為( )
A.
B.
C.
D.
二、填空題:本題共8小題,每小題3分,共24分。
11.已知≌,,,則______.
12.如圖,,、兩點關(guān)于邊OA對稱,、兩點關(guān)于邊OB對稱,若,則線段______.
13.如圖,在中,,AC的垂直平分線交AC于點D,交AB于點E,已知的周長為15cm,,則______
14.如圖,在中,點D、E、F分別是BC,AB,AC上的點,若,,,,則______
15.連接正方形網(wǎng)格中的格點,得到如圖所示的圖形,則______
16.如圖,點D在內(nèi)部,BD平分,且,連接若的面積為2,則的面積為______.
17.如圖1,將一張直角三角形紙片已知,折疊,使得點A落在點B處,折痕為將紙片展平后,再沿著CD將紙片按著如圖2方式折疊,BD邊交AC于點若是等腰三角形,則的度數(shù)可能是_______.
18.如圖,直線,垂足為O,點A是射線OP上一點,,以O(shè)A為邊在OP右側(cè)作,且滿足,若點B是射線ON上的一個動點不與點O重合,連接作的兩個外角平分線交于點C,在點B在運動過程中,當(dāng)線段CF取最小值時,的度數(shù)為______.
三、解答題:本題共8小題,共66分。解答應(yīng)寫出文字說明,證明過程或演算步驟。
19.本小題6分
如圖,點A、D、C、F在同一條直線上,,,求證:≌
20.本小題6分
尺規(guī)作圖,不寫作法,保留作圖痕跡:
如圖1,在的邊BC上求作一點D,使得;
如圖2,在的邊BC上求作一點E,使得點E到AB,AC的距離相等.
21.本小題6分
如圖,在規(guī)格為的邊長為1個單位的正方形網(wǎng)格中每個小正方形的邊長為,的三個頂點都在格點上,且直線m、n互相垂直.
畫出關(guān)于直線n對稱的;
在直線m上作出點P,使得的周長最??;保留作圖痕跡
在的條件下,圖中的面積為______請直接寫出結(jié)果
22.本小題8分
如圖,點D、E在的BC邊上,,
如果,則______;
求證:
23.本小題8分
如圖,的平分線與BC的垂直平分線相交于點D,,,垂足分別為E、F,若,,求BE的長.
24.本小題8分
如圖,在中,AD是高,E、F分別是AB、AC的中點,
,,求四邊形AEDF的周長;
與AD有怎樣的位置關(guān)系,證明你的結(jié)論.
25.本小題12分
如圖1,在中,于點G,以A為直角頂點,分別以AB、AC為直角邊,向作等腰和等腰,過點E,F(xiàn)作射線GA的垂線,垂足分別為P、
試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論;
如圖2,若連接EF交GA的延長線于H,由中的結(jié)論你能判斷EH與FH的大小關(guān)系嗎?并說明理由;
在的條件下,若,請直接寫出______.
26.本小題12分
如圖1,在四邊形ABCD中,,,點P從點C出發(fā)以的速度沿CB向點B勻速移動,點M從點A出發(fā)以的速度沿AB向點B勻速移動,點N從點D出發(fā)以的速度沿DC向點C勻速移動.點P、M、N同時出發(fā),當(dāng)其中一個點到達終點時,其他兩個點也隨之停止運動,設(shè)移動時間為
①當(dāng)a為何值時,以P、B、M為頂點的三角形與全等?并求出相應(yīng)的t的值;
②連接AP、BD交于點當(dāng)時,求出t的值;
如圖2,連接AN、MD交于點當(dāng)且時,求證:
答案和解析
1.【答案】A
【解析】解:B,C,D選項中的圖形都不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是軸對稱圖形;
A選項中的圖形能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是軸對稱圖形.
故選:
根據(jù)如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸進行分析即可.
本題考查了軸對稱圖形的概念.
2.【答案】B
【解析】解:,,,的形狀和大小不能確定,所以A選項不符合題意;
,,,則利用“ASA”可判斷是唯一的,所以B選項符合題意;
,,,的形狀和大小不能確定,所以C選項不符合題意;
,,,不能構(gòu)成三角形,所以D選項不符合題意.
故選:
根據(jù)全等三角形的判定方法,若各選項的條件滿足三角形全等的條件,則可確定三角形的形狀和大小確定,否則三角形的形狀和大小不能確定.
本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法.選用哪一種方法,取決于題目中的已知條件.
3.【答案】D
【解析】【分析】
本題主要考查全等三角形的定義,全等是指形狀相同,大小相同,兩個方面必須同時滿足.
依據(jù)全等三角形的定義:能夠完全重合的兩個三角形,全等三角形的判定和性質(zhì),即可求解.
【解答】
解:①全等三角形的對應(yīng)邊和對應(yīng)角相等,正確;
②、全等三角形面積相等,但面積相等的兩個三角形不一定是全等三角形.故該選項錯誤;
③、全等三角形的周長相等,但周長的兩個三角形不一定能重合,不一定是全等三角形.故該選項錯誤;
④、全等三角形是指能夠完全重合的兩個三角形,故正確;
故正確的是①④.
故選
4.【答案】D
【解析】解:,
故本題選
本可先根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出的度數(shù),進而在中,求得的度數(shù).
本題主要考查等腰三角形的性質(zhì),及三角形內(nèi)角和定理.
5.【答案】B
【解析】解:,
到三個頂點距離相等的點是F,
故選:
根據(jù)勾股定理即可得到結(jié)論.
本題考查了線段垂直平分線的性質(zhì),勾股定理,正確的求出是解題的關(guān)鍵.
6.【答案】C
【解析】解:延長AD到點E,使,連接EC,
是邊BC上的中線,
,
,
≌,
,
在中,,

,
故選:
延長AD到點E,使,連接EC,根據(jù)三角形的中線定義可得,然后利用SAS證明≌,從而可得,最后在中,利用三角形的三邊關(guān)系進行計算即可解答.
本題考查了全等三角形的判定與性質(zhì),三角形的三邊關(guān)系,根據(jù)題目的已知條件并結(jié)合圖形添加適當(dāng)?shù)妮o助線是解題的關(guān)鍵.
7.【答案】A
【解析】解:過點P作于E,
,,

和CP分別平分和,
,,

,
,
故選:
過點P作于E,根據(jù)角平分線上的點到角的兩邊的距離相等可得,,那么,又點P到BC的距離是4,進而求出
本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),熟記性質(zhì)并作輔助線是
解題的關(guān)鍵.
8.【答案】D
【解析】【分析】
本題涉及到三角形內(nèi)角與外角的關(guān)系、三角形內(nèi)角和定理及等腰三角形的性質(zhì),屬于中檔題.
先根據(jù)可求出,,再根據(jù)三角形內(nèi)角和定理可得,由三角形內(nèi)角與外角的性質(zhì)可得,即可得到
【解答】
解:,
,,
又,,,
,
,

故選
9.【答案】C
【解析】解:分別以A、B、C為等腰三角形的頂點的等腰三角形有4個,
滿足條件的直線有4條;
分別以AB、AC、BC為底的等腰三角形有3個,
滿足條件的直線有3條,
綜上可知滿足條件的直線共有7條,
故選:
分別以A、B、C為等腰三角形的頂點,可畫出直線,再分別以AB、AC、BC為底的等腰三角形,可畫出直線,即可得出結(jié)論.
本題主要考查了等腰三角形的性質(zhì)以及分類討論,正確畫出圖形是解題的關(guān)鍵.
10.【答案】A
【解析】解:如圖,連接,,過A作于E,
點B關(guān)于AC的對稱點恰好落在CD上,
垂直平分,

,

,
又,

,
又,
,
故選:
連接,,過A作于E,依據(jù),,即可得出,再根據(jù)四邊形內(nèi)角和以及三角形外角性質(zhì),即可得到
本題主要考查了軸對稱的性質(zhì),四邊形內(nèi)角和以及三角形外角性質(zhì)的運用,解決問題的關(guān)鍵是作輔助線構(gòu)造四邊形,解題時注意:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線.
11.【答案】
【解析】解:因為≌,
所以,
所以,
故答案為:
首先根據(jù)全等三角形的性質(zhì)求出,然后根據(jù)三角形內(nèi)角和定理計算即可.
本題考查的是全等三角形的性質(zhì),掌握全等三角形的對應(yīng)角相等是解題的關(guān)鍵.
12.【答案】3
【解析】解:如圖,連接,
、兩點關(guān)于邊OA對稱,、兩點關(guān)于邊OB對稱,
,,,
,

是等邊三角形,
,
故答案為:
如圖,連接,證明是等邊三角形即可.
本題考查軸對稱的性質(zhì),等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是證明是等邊三角形.
13.【答案】8
【解析】解:是AB的垂直平分線,
,
的周長為15cm,,

,

,
故答案為:
根據(jù)等腰三角形的性質(zhì)和線段垂直平分線的性質(zhì)即可得到結(jié)論.
本題考查了等腰三角形性質(zhì)及線段垂直平分線性質(zhì),熟練掌握有關(guān)定理是解題的關(guān)鍵.
14.【答案】72
【解析】解:在和中,
,
≌,
,
,
,
,
故答案為:
由“SAS”可證≌,可得,由外角的性質(zhì),可求解.
本題考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,掌握全等三角形的判定是本題的關(guān)鍵.
15.【答案】180
【解析】解:由網(wǎng)格可得:≌,
則,
,,
是直角三角形,
故,

,
故答案為:
直接利用網(wǎng)格結(jié)合全等三角形的性質(zhì)、等腰直角三角形的性質(zhì)得出答案.
此題主要考查了全等圖形,正確掌握全等三角形的性質(zhì)是解題關(guān)鍵.
16.【答案】4
【解析】解:延長AD交BC于點E,
,
,
平分,
,
在和中,
≌,
,
,,
故答案為:
延長AD交BC于點E,然后證得≌,得出,根據(jù)中點定義可得的面積為面積的2倍.
此題主要是考查了全等三角形的判定和性質(zhì),能夠根據(jù)題意正確作出輔助線,并證得是解答此題的關(guān)鍵.
17.【答案】或
【解析】【分析】
本題考查了翻折變換,三角形內(nèi)角和定理,直角三角形斜邊中線性質(zhì),等腰三角形的性質(zhì),解決本題的關(guān)鍵是掌握翻折的性質(zhì).由翻折可得,,所以,所以,,若是等腰三角形,有三種情況:①當(dāng)時,,②當(dāng)時,,③當(dāng)時,,然后分別列式計算即可解決問題.
【解答】
解:由翻折可知:,,
,


,
,
,,
若是等腰三角形,有三種情況:
①當(dāng)時,,
,
解得;
②當(dāng)時,,
,
不符合題意舍去;
③當(dāng)時,,
,
解得
綜上所述:的度數(shù)可能是或
故答案為:或
18.【答案】
【解析】解:如圖,作于E,于G,于H,連接OC,
平分,,,
,
同理可得:,
,
,,
平分,即點C在的平分線上,

,
,
如圖,當(dāng)時,最小,此時點C在處,
,
,
當(dāng)線段CF取最小值時,的度數(shù)為,
故答案為:
作于E,于G,于H,連接OC,由角平分線的性質(zhì)可得,,從而得到,即可推出OC平分,即點C在的角平分線上,得到,,當(dāng)時,最小,此時點C在處,再由進行計算即可得到答案.
本題考查角平分線的判定與性質(zhì)、垂線段最短,直角三角形兩銳角互余等知識,熟練掌握角平分線的判定與性質(zhì),添加適當(dāng)?shù)妮o助線是解此題的關(guān)鍵.
19.【答案】證明:,
,
即,
在和中,
,

【解析】由,根據(jù)等式性質(zhì)得,再根據(jù)SSS定理得到結(jié)論.
本題考查了全等三角形的判定,關(guān)鍵是熟記全等三角形的判定方法.
20.【答案】解:如圖1中,點D即為所求;
如圖2中,點E即為所求.
【解析】作線段BC的垂直平分線,垂足為D即可;
作AE平分,AE交BC一點E,點E即為所求.
本題考查作圖-角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握五種基本作圖.
21.【答案】2
【解析】解:如圖所示,即為所求;
如圖所示,點P即為所求;

故答案為:
根據(jù)軸對稱的性質(zhì)找出對應(yīng)點即可求解;
作點B關(guān)于直線m的對稱點,連接交直線m于點P,則點P即為所求;
根據(jù)割補法即可求解.
本題考查了軸對稱變換的性質(zhì),軸對稱-最短路線問題,熟練掌握軸對稱變換的性質(zhì)是解題的關(guān)鍵.
22.【答案】40
【解析】解:,


故答案為:
證明:如圖,過點A作于
,
,
,
,

由等腰三角形的性質(zhì)及三角形內(nèi)角和定理可求出答案;
過點A作于由等腰三角形的性質(zhì)得出,,則可得出結(jié)論.
本題考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,熟練掌握等腰三角形的性質(zhì)是解答本題的關(guān)鍵.
23.【答案】解:連接DC,DB,如圖所示:
是的平分線,,,

在和中,
,

,
是線段BC的垂直平分線,
,
在和中,
,
,
,
,,

,

【解析】連接DC,DB,分別依據(jù)“HL”判定和全等,和全等,則,,再根據(jù),得,,由此可得BE的長.
此題主要考查了全等三角形的判定與性質(zhì),角平分線的性質(zhì),線段垂直平分線的性質(zhì),理解角平分線的性質(zhì),線段垂直平分線的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解決問題的關(guān)鍵
24.【答案】解:,,E、F分別是AB、AC的中點,
,,
,E、F分別是AB、AC的中點,
,,
四邊形AEDF的周長為:;
,,
垂直平分
【解析】根據(jù)線段中點的性質(zhì)求出AE、AF,根據(jù)直角進行的性質(zhì)求出DE、DF,計算即可;
根據(jù)線段垂直平分線的定義判斷即可.
本題考查的是直角三角形的性質(zhì)、線段垂直平分線的判定,掌握直角三角形中,斜邊上的中線等于斜邊的一半是解題的關(guān)鍵.
25.【答案】12
【解析】,
證明:,,,

,,
,
在和中,

≌,

同理≌,
則,
;
解:,
理由是:,,
,
在和中,
,
≌,
;
解:≌,≌,≌,
,,,
故答案為:
求出,,根據(jù)AAS推出≌,推出,同理≌,,即可得出答案.
求出,根據(jù)AAS推出≌即可;
根據(jù)全等三角形≌,≌,≌,即可求出,根據(jù)三角形面積公式求出即可.
本題考查了全等三角形的性質(zhì)和判定,三角形的面積的應(yīng)用,注意:全等三角形的對應(yīng)邊相等,對應(yīng)角相等,全等三角形的面積相等.
26.【答案】解:①,
當(dāng)≌時,有,,即①,
②,
由①②可得,
當(dāng)≌時,有,,即③
④,
由③④可得,
綜上所述,當(dāng),或,時,以P、B、M為頂點的三角形與全等;
②,
,

,

,
在和中,
,
≌,
,
即,
證明:當(dāng),時,,而,
,
點N在點C、D之間,
,,
,
如圖2中,連接AC交MD于
,
,

,,
在和中,
,
≌,
,
,,
,

【解析】①當(dāng)≌時或當(dāng)≌時,分別列出方程即可解決問題;
②當(dāng)時,由≌,推出,列出方程即可解決問題;
如圖2中,連接AC交MD于O只要證明≌,推出,可得,,推出,即;
本題考查四邊形綜合題、全等三角形的判定和性質(zhì)、等高模型等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.

相關(guān)試卷

江蘇省無錫市錫山區(qū)二泉中學(xué)2024-2025學(xué)年八年級上學(xué)期期月考數(shù)學(xué)試卷(10月份):

這是一份江蘇省無錫市錫山區(qū)二泉中學(xué)2024-2025學(xué)年八年級上學(xué)期期月考數(shù)學(xué)試卷(10月份),共20頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

江蘇省無錫市錫山區(qū)2024-2025學(xué)年數(shù)學(xué)九上開學(xué)調(diào)研試題【含答案】:

這是一份江蘇省無錫市錫山區(qū)2024-2025學(xué)年數(shù)學(xué)九上開學(xué)調(diào)研試題【含答案】,共21頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2023-2024學(xué)年江蘇省無錫市錫山區(qū)二泉中學(xué)七年級(上)段考數(shù)學(xué)試卷(10月份)(含解析):

這是一份2023-2024學(xué)年江蘇省無錫市錫山區(qū)二泉中學(xué)七年級(上)段考數(shù)學(xué)試卷(10月份)(含解析),共14頁。試卷主要包含了選擇題,填空題,計算題,解答題等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

江蘇省無錫市倉下中學(xué)、二泉中學(xué)2023-2024學(xué)年七年級上學(xué)期12月階段練習(xí)數(shù)學(xué)試卷(月考)

江蘇省無錫市倉下中學(xué)、二泉中學(xué)2023-2024學(xué)年七年級上學(xué)期12月階段練習(xí)數(shù)學(xué)試卷(月考)

江蘇省無錫市倉下中學(xué)、二泉中學(xué)2023-2024學(xué)年八年級上學(xué)期12月階段練習(xí)數(shù)學(xué)試卷(月考)

江蘇省無錫市倉下中學(xué)、二泉中學(xué)2023-2024學(xué)年八年級上學(xué)期12月階段練習(xí)數(shù)學(xué)試卷(月考)

江蘇省無錫市二泉中學(xué)2023-2024學(xué)年八年級上數(shù)學(xué)10月階段練習(xí)數(shù)學(xué)試卷(月考)

江蘇省無錫市二泉中學(xué)2023-2024學(xué)年八年級上數(shù)學(xué)10月階段練習(xí)數(shù)學(xué)試卷(月考)

江蘇省無錫市二泉中學(xué)2023-2024學(xué)年九年級上學(xué)期 10月階段練習(xí)數(shù)學(xué)試卷(月考)

江蘇省無錫市二泉中學(xué)2023-2024學(xué)年九年級上學(xué)期 10月階段練習(xí)數(shù)學(xué)試卷(月考)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
月考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部