



2025屆貴州省長順縣聯(lián)考數(shù)學(xué)九上開學(xué)檢測模擬試題【含答案】
展開
這是一份2025屆貴州省長順縣聯(lián)考數(shù)學(xué)九上開學(xué)檢測模擬試題【含答案】,共21頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)
1、(4分)如圖,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)α,得到△EBD,若點(diǎn)A恰好在ED的延長線上,則∠CAD的度數(shù)為( )
A.90°﹣αB.αC.180°﹣αD.2α
2、(4分)如圖,在?ABCD中,對角線AC與BD交于點(diǎn)O,若增加一個(gè)條件,使?ABCD成為菱形,下列給出的條件正確的是( )
A.AB=ADB.AC=BDC.∠ABC=90°D.∠ABC=∠ADC
3、(4分)已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A.當(dāng)AB=BC時(shí),它是菱形B.當(dāng)AC⊥BD時(shí),它是菱形
C.當(dāng)∠ABC=90°時(shí),它是矩形D.當(dāng)AC=BD時(shí),它是正方形
4、(4分)下列命題是真命題的是( )
A.平行四邊形的對角線互相平分且相等
B.任意多邊形的外角和均為360°
C.鄰邊相等的四邊形是菱形
D.兩個(gè)相似比為1:2的三角形對應(yīng)邊上的高之比為1:4
5、(4分)若一個(gè)多邊形的每個(gè)內(nèi)角都等于150°,則這個(gè)多邊形的邊數(shù)是( )
A.10B.11C.12D.13
6、(4分)已知是完全平方式,則的值為( )
A.6B.C.12D.
7、(4分)要使二次根式有意義,則x應(yīng)滿足
A.B.C.D.
8、(4分)下面的圖形中,既是中心對稱又是軸對稱的圖形是( )
A.B.C.D.
二、填空題(本大題共5個(gè)小題,每小題4分,共20分)
9、(4分)若直角三角形的兩直角邊長為a、b,且滿足,則該直角三角形的斜邊長為 .
10、(4分)如圖,在△ABC中,A,B兩點(diǎn)的坐標(biāo)分別為A(-1,3),B(-2,0), C(2,2),則△ABC的面積是________ .
11、(4分).在平面直角坐標(biāo)系中,若點(diǎn)M(1,3)與點(diǎn)N(x,3)之間的距離是5,則x的值是____________.
12、(4分)菱形ABCD中,∠B=60°,AB=4,點(diǎn)E在BC上,CE=2,若點(diǎn)P是菱形上異于點(diǎn)E的另一點(diǎn),CE=CP,則EP的長為_____.
13、(4分)在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個(gè)三角形,剩下的部分是如圖所示的直角梯形,其中三邊長分別為2、3、4,則原直角三角形紙片的斜邊長是 .
三、解答題(本大題共5個(gè)小題,共48分)
14、(12分)已知:直線y=與x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO上.將△CBO沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D處.
(1)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo):
(2)求AC的長;
(3)點(diǎn)P為平面內(nèi)一動點(diǎn),且滿足以A、B、C、P為頂點(diǎn)的四邊形為平行四邊形,請直接回答:
①符合要求的P點(diǎn)有幾個(gè)?
②寫出一個(gè)符合要求的P點(diǎn)坐標(biāo).
15、(8分)定義:對于給定的一次函數(shù)y=ax+b(a≠0),把形如的函數(shù)稱為一次函數(shù)y=ax+b(a≠0)的衍生函數(shù).已知矩形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,0),B(1,2),C(-3,2),D(-3,0).
(1)已知函數(shù)y=2x+l.
①若點(diǎn)P(-1,m)在這個(gè)一次函數(shù)的衍生函數(shù)圖像上,則m= .
②這個(gè)一次函數(shù)的衍生函數(shù)圖像與矩形ABCD的邊的交點(diǎn)坐標(biāo)分別為 .
(2)當(dāng)函數(shù)y=kx-3(k>0)的衍生函數(shù)的圖象與矩形ABCD有2個(gè)交點(diǎn)時(shí),k的取值范圍是 .
16、(8分)在數(shù)學(xué)學(xué)習(xí)中,及時(shí)對知識進(jìn)行歸納和整理是提高學(xué)習(xí)效率的重要方法,善于學(xué)習(xí)的小明在學(xué)習(xí)了一次方程(組)、一元一次不等式和一次函數(shù)后,對照圖形,把相關(guān)知識歸納整理如下:
一次函數(shù)與方程(組)的關(guān)系:
(1)一次函數(shù)的解析式就是一個(gè)二元一次方程;
(2)點(diǎn)B的橫坐標(biāo)是方程kx+b=0的解;
(3)點(diǎn)C的坐標(biāo)(x,y)中x,y的值是方程組①的解.
一次函數(shù)與不等式的關(guān)系:
(1)函數(shù)y=kx+b的函數(shù)值y大于0時(shí),自變量x的取值范圍就是不等式kx+b>0的解集;
(2)函數(shù)y=kx+b的函數(shù)值y小于0時(shí),自變量x的取值范圍就是不等式②的解集.
(一)請你根據(jù)以上歸納整理的內(nèi)容在下面的數(shù)字序號后寫出相應(yīng)的結(jié)論:① ;② ;
(二)如果點(diǎn)B坐標(biāo)為(2,0),C坐標(biāo)為(1,3);
①直接寫出kx+b≥k1x+b1的解集;
②求直線BC的函數(shù)解析式.
17、(10分)先化簡,再求值:,在﹣2,0,1,2四個(gè)數(shù)中選一個(gè)合適的代入求值.
18、(10分)往一個(gè)長25m,寬11m的長方體游泳池注水,水位每小時(shí)上升0.32m,
(1)寫出游泳池水深d(m)與注水時(shí)間x(h)的函數(shù)表達(dá)式;
(2)如果x(h)共注水y(m3),求y與x的函數(shù)表達(dá)式;
(3)如果水深1.6m時(shí)即可開放使用,那么需往游泳池注水幾小時(shí)?注水多少(單位:m3)?
B卷(50分)
一、填空題(本大題共5個(gè)小題,每小題4分,共20分)
19、(4分)菱形的周長是20,一條對角線的長為6,則它的面積為_____.
20、(4分)在中,對角線,相交于點(diǎn),若,,,則的周長為_________.
21、(4分)正方形網(wǎng)格中,∠AOB如圖放置,則tan∠AOB=______________.
22、(4分)計(jì)算______.
23、(4分)已知一次函數(shù)的圖象過點(diǎn),那么此一次函數(shù)的解析式為__________.
二、解答題(本大題共3個(gè)小題,共30分)
24、(8分)如圖,在邊長為1的小正方形組成的網(wǎng)格中,的三個(gè)頂點(diǎn)均在格點(diǎn)上,請按要求完成下列各題:
(1)畫線段,且使,連接;
(2)線段的長為________,的長為________,的長為________;
(3)是________三角形,四邊形的面積是________;
(4)若點(diǎn)為的中點(diǎn),為,則的度數(shù)為________.
25、(10分)當(dāng)a在什么范圍內(nèi)取值時(shí),關(guān)于x的一元一次方程的解滿足?
26、(12分)已知某企業(yè)生產(chǎn)的產(chǎn)品每件出廠價(jià)為70元,其成本價(jià)為25元,同時(shí)在生產(chǎn)過程中,平均每生產(chǎn)一件產(chǎn)品有1 m3的污水排出,為達(dá)到排污標(biāo)準(zhǔn),現(xiàn)有以下兩種處理污水的方案可供選擇.
方案一:將污水先凈化處理后再排出,每處理1 m3污水的費(fèi)用為3元,并且每月排污設(shè)備損耗為24 000元.
方案二:將污水排到污水廠統(tǒng)一處理,每處理1 m3污水的費(fèi)用為15元,設(shè)該企業(yè)每月生產(chǎn)x件產(chǎn)品,每月利潤為y元.
(1)分別寫出該企業(yè)一句方案一和方案二處理污水時(shí),y與x的函數(shù)關(guān)系式;
(2)已知該企業(yè)每月生產(chǎn)1 000件產(chǎn)品,如果你是該企業(yè)的負(fù)責(zé)人,那么在考慮企業(yè)的生產(chǎn)實(shí)際前提下,選擇哪一種污水處理方案更劃算?
參考答案與詳細(xì)解析
一、選擇題(本大題共8個(gè)小題,每小題4分,共32分,每小題均有四個(gè)選項(xiàng),其中只有一項(xiàng)符合題目要求)
1、C
【解析】
分析:根據(jù)旋轉(zhuǎn)的性質(zhì)和四邊形的內(nèi)角和是360°,可以求得∠CAD的度數(shù),本題得以解決.
詳解:由題意可得,
∠CBD=α,∠ACB=∠EDB,
∵∠EDB+∠ADB=180°,
∴∠ADB+∠ACB=180°,
∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,
∴∠CAD=180°?α,
故選C.
點(diǎn)睛:本題考查旋轉(zhuǎn)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.
2、A
【解析】
根據(jù)菱形的定義和判定定理即可作出判斷.
【詳解】
A、根據(jù)菱形的定義可得,當(dāng)AB=AD時(shí)平行四邊形ABCD是菱形,故A選項(xiàng)符合題意;
B、根據(jù)對角線相等的平行四邊形是矩形,可知AC=BD時(shí),平行四邊形ABCD是矩形,故B選項(xiàng)不符合題意;
C、有一個(gè)角是直角的平行四邊形是矩形,可知當(dāng)∠ABC=90° 時(shí),平行四邊形ABCD是矩形,故C選項(xiàng)不符合題意;
D、由平行四邊形的性質(zhì)可知∠ABC=∠ADC,∠ABC=∠ADC這是一個(gè)已知條件,因此不能判定平行四邊形ABCD是菱形,故D選項(xiàng)不符合題意,
故選A.
本題考查了平行四邊形的性質(zhì),菱形的判定、矩形的判定等,熟練掌握相關(guān)的判定方法是解題的關(guān)鍵.
3、D
【解析】
直接利用特殊平行四邊形的判定逐一進(jìn)行判斷即可
【詳解】
有一組鄰邊相等的平行四邊形是菱形,故A正確
對角線互相垂直的平行四邊形是菱形,故B正確
有一個(gè)角是直角的平行四邊形是矩形,故C正確
對角線垂直且相等的平行四邊形是正方形,故D錯(cuò)誤
本題選擇不正確的,故選D
本題主要考查平行四邊形性質(zhì)、矩形的判定定理、正方形判定定理、菱形判定定理,基礎(chǔ)知識扎實(shí)是解題關(guān)鍵
4、B
【解析】
利用平行四邊形的性質(zhì)、多邊形的外角和、菱形的判定及相似三角形的性質(zhì)判斷后即可確定正確的選項(xiàng).
【詳解】
解:A、平行四邊形的對角線互相平分但不一定相等,故錯(cuò)誤,是假命題;
B、任意多邊形的外角和均為360°,正確,是真命題;
C、鄰邊相等的平行四邊形是菱形,故錯(cuò)誤,是假命題;
D、兩個(gè)相似比為1:2的三角形對應(yīng)邊上的高之比為1:2,故錯(cuò)誤,是假命題,
故選:B.
本題考查了命題的判斷,涉及平行四邊形的性質(zhì)、多邊形的外角和、菱形的判定及相似三角形的性質(zhì)等知識點(diǎn),掌握基本知識點(diǎn)是解題的關(guān)鍵.
5、C
【解析】
根據(jù)多邊形的內(nèi)角和定理:(n?2)×180°求解即可.
【詳解】
解:由題意可得:180°?(n﹣2)=150°?n,
解得n=1.
故多邊形是1邊形.
故選:C.
主要考查了多邊形的內(nèi)角和定理.n邊形的內(nèi)角和為:(n?2)×180°.此類題型直接根據(jù)內(nèi)角和公式計(jì)算可得.
6、D
【解析】
根據(jù)完全平方式的結(jié)構(gòu)特征,即可求出m的值.
【詳解】
解:∵是完全平方式,
∴;
故選擇:D.
此題主要考查了完全平方公式的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:(a±b)1=a1±1ab+b1.
7、A
【解析】
本題主要考查自變量的取值范圍,根據(jù)二次根式的意義,被開方數(shù)是非負(fù)數(shù).
【詳解】
解:根據(jù)題意得:x-1≥0,
解得x≥1.
故選A.
本題主要考查的知識點(diǎn)為:二次根式有意義的條件:二次根式的被開方數(shù)是非負(fù)數(shù).
8、D
【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念進(jìn)行判斷即可.
【詳解】
A、是軸對稱圖形,不是中心對稱圖形.故錯(cuò)誤;
B、不是軸對稱圖形,是中心對稱圖形.故錯(cuò)誤;
C、不是軸對稱圖形,是中心對稱圖形.故錯(cuò)誤;
D、既是軸對稱圖形,也是中心對稱圖形.故正確.
故選D.
本題考查的是中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.
二、填空題(本大題共5個(gè)小題,每小題4分,共20分)
9、1.
【解析】
∵,
∴=0,b-2=0,解得a=3,b=2.
∵直角三角形的兩直角邊長為a、b,
∴該直角三角形的斜邊長=.
10、1
【解析】
利用△ABC所在的矩形的面積減去四周三個(gè)直角三角形的面積列式計(jì)算即可得解.
【詳解】
解:△ABC的面積=3×4-×4×2-×3×1-×1×3
=12-4-1.1-1.1
=1.
故答案為1
本題考查了坐標(biāo)與圖形性質(zhì),主要是在平面直角坐標(biāo)系中確定點(diǎn)的位置的方法和三角形的面積的求解.
11、-4或1
【解析】
分析:點(diǎn)M、N的縱坐標(biāo)相等,則直線MN在平行于x軸的直線上,根據(jù)兩點(diǎn)間的距離,可列出等式|x-1|=5,從而解得x的值.
解答:解:∵點(diǎn)M(1,3)與點(diǎn)N(x,3)之間的距離是5,
∴|x-1|=5,
解得x=-4或1.
故答案為-4或1.
12、1或2或3﹣.
【解析】
連接EP交AC于點(diǎn)H,依據(jù)菱形的性質(zhì)可得到∠ECH=∠PCH=10°,然后依據(jù)SAS可證明△ECH≌△PCH,則∠EHC=∠PHC=90°,最后依據(jù)PE=EH求解即可.
【詳解】
解:如圖所示:連接EP交AC于點(diǎn)H.
∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中 ,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴OC=EC=.
∴EH=3,
∴EP=2EH=1.
如圖2所示:當(dāng)P在AD邊上時(shí),△ECP為等腰直角三角形,則 .
當(dāng)P′在AB邊上時(shí),過點(diǎn)P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=30°.
∴ .
∴ .
故答案為1或2或3﹣.
本題主要考查的是菱形的性質(zhì),熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.
13、2或10.
【解析】
試題分析:先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.
試題解析:①如圖:
因?yàn)镃D=,
點(diǎn)D是斜邊AB的中點(diǎn),
所以AB=2CD=2,
②如圖:
因?yàn)镃E=
點(diǎn)E是斜邊AB的中點(diǎn),
所以AB=2CE=10,
綜上所述,原直角三角形紙片的斜邊長是2或10.
考點(diǎn):1.勾股定理;2.直角三角形斜邊上的中線;3.直角梯形.
三、解答題(本大題共5個(gè)小題,共48分)
14、(1)B(0,6),A(﹣8,0).(2)1;(3)①3個(gè);②P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).
【解析】
(1)利用待定系數(shù)法解決問題即可.
(2)由翻折不變性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,推出AD=AB-BD=4,設(shè)CD=OC=x,在Rt△ADC中,根據(jù)AD2+CD2=AC2,構(gòu)建方程即可解決問題.
(3)①根據(jù)平行四邊形的定義畫出圖形即可判斷.
②利用平行四邊形的性質(zhì)求解即可解決問題.
【詳解】
(1)對于直線y=x+6,令x=0,得到y(tǒng)=6,
∴B(0,6),
令y=0,得到x=﹣8,
∴A(﹣8,0).
(2)∵A(﹣8,0).B(0,6),
∴OA=8,OB=6,∵∠AOB=90°,
∴AB===10,
由翻折不變性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,
∴AD=AB﹣BD=4,設(shè)CD=OC=x,
在Rt△ADC中,∵∠ADC=90°,
∴AD2+CD2=AC2,
∴42+x2=(8﹣x)2,
解得x=3,
∴OC=3,AC=OA﹣OC=8﹣3=1.
(3)①符合條件的點(diǎn)P有3個(gè)如圖所示.
②∵A(﹣8,0),C(﹣3,0),B(0,6),
可得P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).
本題屬于一次函數(shù)綜合題,考查了待定系數(shù)法,解直角三角形,平行四邊形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,學(xué)會用分類討論的思想思考問題
15、(1)①1,②(,2)或(,,0);(2)1<k<1;
【解析】
(1)①x=-1<0,則m=-2×(-1)+1=1,即可求解;②一次函數(shù)的衍生函數(shù)圖象與矩形ABCD的邊的交點(diǎn)位置在BC和AD上,即可求解;
(2)當(dāng)直線在位置①時(shí),函數(shù)和矩形有1個(gè)交點(diǎn),當(dāng)直線在位置②時(shí),函數(shù)和圖象有1個(gè)交點(diǎn),在圖①②之間的位置,直線與矩形有2個(gè)交點(diǎn),即可求解.
【詳解】
解:(1)①x=-1<0,則m=-2×(-1)+1=1,
故答案為:1;
②一次函數(shù)的衍生函數(shù)圖象與矩形ABCD的邊的交點(diǎn)位置在BC和AD上,
當(dāng)y=2時(shí),2x+1=2,解得:x=,
當(dāng)y=0時(shí),2x+1=0,解得:x=,
故答案為:(,2)或(,,0);
(2)函數(shù)可以表示為:y=|k|x-1,
如圖所示當(dāng)直線在位置①時(shí),函數(shù)和矩形有1個(gè)交點(diǎn),
當(dāng)x=1時(shí),y=|k|x-1=1|k|-1=0,k=±1,
k>0,取k=1
當(dāng)直線在位置②時(shí),函數(shù)和圖象有1個(gè)交點(diǎn),
同理k=1,
故在圖①②之間的位置,直線與矩形有2個(gè)交點(diǎn),
即:1<k<1.
本題為一次函數(shù)綜合題,涉及到新定義、直線與圖象的交點(diǎn)等,其中(2),要注意分類求解,避免遺漏.
16、(一);kx+b<1;(二)①x≤1;②y=-3x+2
【解析】
(一)①因?yàn)镃點(diǎn)是兩個(gè)函數(shù)圖象的交點(diǎn),因此C點(diǎn)坐標(biāo)必為兩函數(shù)解析式聯(lián)立所得方程組的解;
②函數(shù)y=kx+b中,當(dāng)y<1時(shí),kx+b<1,因此x的取值范圍是不等式kx+b<1的解集;
(二)①由圖可知:在C點(diǎn)左側(cè)時(shí),直線y=kx+b的函數(shù)值要大于直線y=k1x+b1的函數(shù)值;
②利用待定系數(shù)法即可求出直線BC的函數(shù)解析式.
【詳解】
解:(一)根據(jù)題意,可得①;②kx+b<1.
故答案為;kx+b<1;
(二)如果點(diǎn)B坐標(biāo)為(2,1),C坐標(biāo)為(1,3);
①kx+b≥k1x+b1的解集是x≤1;
②∵直線BC:y=kx+b過點(diǎn)B(2,1),C(1,3),
∴,解得,
∴直線BC的函數(shù)解析式為y=-3x+2.
此題考查了一次函數(shù)與二元一次方程組及一元一次不等式之間的聯(lián)系,一次函數(shù)的性質(zhì),待定系數(shù)法求一次函數(shù)解析式,利用數(shù)形結(jié)合與方程思想是解答本題的關(guān)鍵.
17、,1.
【解析】
試題分析:原式括號中兩項(xiàng)通分并利用同分母分式的減法法則計(jì)算,同時(shí)利用除法法則變形,約分得到最簡結(jié)果,把x=1代入計(jì)算即可求出值.
試題解析:原式=(
=
=2(x+4)
當(dāng)x=1時(shí),原式=1.
18、 (1)d=0.32x;(2)y=0.88x;(3)需往游泳池注水5小時(shí);注水440m3
【解析】
試題分析:
(1)根據(jù)題意知:利用水位每小時(shí)上升0.32m,得出水深d(m)與注水時(shí)間x(h)之間的函數(shù)關(guān)系式;
(2)首先求出游泳池每小時(shí)進(jìn)水的體積,再求y與x的函數(shù)表達(dá)式即可;
(3)利用(1)中所求,結(jié)合水深不低于1.6m得出不等式求出即可.
【解答】解:(1)d=0.32x;
(2)
∴y=88x
(3)設(shè)向游泳池注水x小時(shí),由題意得:
0.32x≥1.6,
解得:x≥5,
∴y=88x=88x=440m3.
答:向游泳池至少注水4小時(shí)后才可以使用.注水440m3
【點(diǎn)評】此題主要考查了一次函數(shù)的應(yīng)用以及不等式的應(yīng)用,根據(jù)題意得出游泳池水深d(m與注水時(shí)間x(h)之間的函數(shù)關(guān)系式是解題關(guān)鍵.
一、填空題(本大題共5個(gè)小題,每小題4分,共20分)
19、1.
【解析】
先畫出圖形,根據(jù)菱形的性質(zhì)可得,DO=3,根據(jù)勾股定理可求得AO的長,從而得到AC的長,再根據(jù)菱形的面積公式即可求得結(jié)果.
【詳解】
由題意得,
∵菱形ABCD
∴,AC⊥BD
∴
∴
∴
考點(diǎn):本題考查的是菱形的性質(zhì)
解答本題的關(guān)鍵是熟練掌握菱形的對角線互相垂直且平分,菱形的四條邊相等;同時(shí)熟記菱形的面積等于對角線乘積的一半.
20、21
【解析】
由在平行四邊形ABCD中,AC=14,BD=8,AB=10,利用平行四邊形的性質(zhì),即可求得OA與OB的長,繼而求得△OAB的周長.
【詳解】
∵在平行四邊形ABCD中,AC=14,BD=8,AB=10,
∴OA=AC=7,OB=BD=4,
∴△OAB的周長為:AB+OB+OA=10+7+4=21.
故答案為:21.
本題考查平行四邊形的性質(zhì),熟練掌握平行四邊形的性質(zhì)和計(jì)算法則是解題關(guān)鍵.
21、1
【解析】
試題解析:如圖,
tan∠AOB==1,
故答案為1.
22、
【解析】
先進(jìn)行二次根式的化簡,然后合并.
【詳解】
解:原式.
故答案為:.
本題考查了二次根式的加減法,正確化簡二次根式是解題的關(guān)鍵.
23、
【解析】
用待定系數(shù)法即可得到答案.
【詳解】
解:把代入得,解得,
所以一次函數(shù)解析式為.
故答案為
本題考查求一次函數(shù)解析式,解題的關(guān)鍵是熟練掌握待定系數(shù)法.
二、解答題(本大題共3個(gè)小題,共30分)
24、(1)見解析;(2),,5;(3)直角,10;(4)
【解析】
(1)根據(jù)題意,畫出AD∥BC且使AD=BC,連接CD;
(2)在網(wǎng)格中利用直角三角形,先求AC 的值,再求出AC的長,CD的長,AD的長;
(3)利用勾股定理的逆定理判斷直角三角形,再求出四邊形ABCD的面積;
(4)把問題轉(zhuǎn)化到Rt△ACB中,利用直角三角形斜邊上的中線可知BE=AE=EC,根據(jù)等腰三角形性質(zhì)即可解題.
【詳解】
(1)如圖所示:AD、CD為所求作
(2)根據(jù)勾股定理得:
故答案為:;;5
(3)∵,
∴
∴是直角三角形,∠ACD=90°
∴四邊形的面積是:
故答案為:直角;10
(4)∵,
∴四邊形ABCD是平行四邊形
∴AB//CD
∴∠BAC=∠ACD=90°
在Rt△ACD中,為的中點(diǎn)
∴AE=BE=CE, ∠ABC+∠ACB=90°
∴∠ACB=∠EAC=27°
∴∠ABC =63°
故答案為:
本題考查了勾股定理及其逆定理的運(yùn)用,平行四邊形的性質(zhì)關(guān)鍵是運(yùn)用網(wǎng)格表示線段的長度.
25、
【解析】
先求出一元一次方程的解,然后根據(jù)解為,求出a的范圍.
【詳解】
解:去分母得:4x+2a=3?3x,
移項(xiàng)得:7x=3?2a,
解得,
因?yàn)?,所以?br>所以.
此題考查解一元一次不等式,一元一次方程的解,解題關(guān)鍵在于求出一元一次方程的解.
26、(1)選擇方案一時(shí),月利潤為y1=42x-24 000;選擇方案二時(shí),月利潤為y2=30x;(2)選擇方案一更劃算.
【解析】
(1)方案一的等量關(guān)系是利潤=產(chǎn)品的銷售價(jià)-成本價(jià)-處理污水的費(fèi)用-設(shè)備損耗的費(fèi)用,方案二的等量關(guān)系是利潤=產(chǎn)品的銷售價(jià)-成本價(jià)-處理污水的費(fèi)用.可根據(jù)這兩個(gè)等量關(guān)系來列出關(guān)于利潤和產(chǎn)品件數(shù)之間的函數(shù)關(guān)系式;
(2)可將(1)中得出的關(guān)系式進(jìn)行比較,判斷出哪個(gè)方案最省錢.
【詳解】
解 (1)因?yàn)楣S每月生產(chǎn)x件產(chǎn)品,每月利潤為y萬元,由題意得
選擇方案一時(shí),月利潤為y1=(70-25)x-(3x+24 000)=42x-24 000,
選擇方案二時(shí),月利潤為y2=(70-25)x-15x=30x;
(2)當(dāng)x=1 000時(shí),y1=42x-24 000=18 000,
y2=30x=30 000,
∵y1<y2.
∴選擇方案二更劃算.
本題考查的是一次函數(shù)的綜合運(yùn)用,熟練掌握一次函數(shù)是解題的關(guān)鍵.
題號
一
二
三
四
五
總分
得分
批閱人
相關(guān)試卷
這是一份2025屆貴州省石阡縣數(shù)學(xué)九上開學(xué)質(zhì)量檢測模擬試題【含答案】,共29頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2025屆貴州省銅仁市思南縣數(shù)學(xué)九上開學(xué)聯(lián)考模擬試題【含答案】,共21頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2024年河北省灤縣聯(lián)考九上數(shù)學(xué)開學(xué)質(zhì)量檢測模擬試題【含答案】,共19頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

相關(guān)試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請聯(lián)系客服,如若屬實(shí),我們會補(bǔ)償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時(shí)請及時(shí)更新
- 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載