
1.已知數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,則數(shù)列 SKIPIF 1 < 0 的前10項(xiàng)的和為( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】C
【分析】首先根據(jù) SKIPIF 1 < 0 得到 SKIPIF 1 < 0 ,設(shè) SKIPIF 1 < 0 ,再利用裂項(xiàng)求和即可得到答案.
【詳解】當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 .
檢驗(yàn) SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .設(shè) SKIPIF 1 < 0 ,前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,
則 SKIPIF 1 < 0 .故選:C
2.談祥柏先生是我國(guó)著名的數(shù)學(xué)科普作家,在他的《好玩的數(shù)學(xué)》一書(shū)中,有一篇文章《五分鐘挑出埃及分?jǐn)?shù)》,文章告訴我們,古埃及人喜歡使用分子為1的分?jǐn)?shù)(稱為埃及分?jǐn)?shù)).則下列埃及分?jǐn)?shù) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,…, SKIPIF 1 < 0 的和是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】B
【分析】根據(jù)裂項(xiàng)相消法即可求和.
【詳解】因?yàn)?SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 ,故選:B
3.設(shè)等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 恒成立,則 SKIPIF 1 < 0 的最小值為( )
A.1B.2
C.3D.4
【答案】A
【分析】由 SKIPIF 1 < 0 ,求得 SKIPIF 1 < 0 ,又由 SKIPIF 1 < 0 ,求得 SKIPIF 1 < 0 ,求得 SKIPIF 1 < 0 ,得到 SKIPIF 1 < 0 ,進(jìn)而求得 SKIPIF 1 < 0 ,結(jié)合題意,即可求解.
【詳解】設(shè)等差數(shù)列 SKIPIF 1 < 0 的公差為 SKIPIF 1 < 0 ,因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
整理得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 恒成立,所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 的最小值為1.故選:A.
4.定義 SKIPIF 1 < 0 為 SKIPIF 1 < 0 個(gè)正數(shù) SKIPIF 1 < 0 的“均倒數(shù)”,若已知數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)的“均倒數(shù)”為 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】D
【分析】由題意結(jié)合新定義的概念求得數(shù)列的前n項(xiàng)和,然后利用前n項(xiàng)和求解通項(xiàng)公式,最后裂項(xiàng)求和即可求得最終結(jié)果.
【詳解】設(shè)數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和為 SKIPIF 1 < 0 ,由題意可得: SKIPIF 1 < 0 ,則: SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,
當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,據(jù)此可得 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,據(jù)此有:
SKIPIF 1 < 0 故選:D
5.已知數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
【答案】B
【分析】利用倒數(shù)法求出數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式,進(jìn)而利用裂項(xiàng)相消法可求得 SKIPIF 1 < 0 .
【詳解】已知數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在等式 SKIPIF 1 < 0
兩邊同時(shí)取倒數(shù)得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
所以,數(shù)列 SKIPIF 1 < 0 是等差數(shù)列,且首項(xiàng)為 SKIPIF 1 < 0 ,公差為 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
因此, SKIPIF 1 < 0 SKIPIF 1 < 0 .故選:B.
二、解答題
6.已知數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 SKIPIF 1 < 0 .
【分析】(1)當(dāng) SKIPIF 1 < 0 時(shí),由 SKIPIF 1 < 0 得到 SKIPIF 1 < 0 ,兩式相減,然后再利用累積法求解.
(2)由(1)得 SKIPIF 1 < 0 ,然后利用裂項(xiàng)相消法求解.
【詳解】(1)當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ,
整理得 SKIPIF 1 < 0 .故 SKIPIF 1 < 0 .
當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 滿足上式,故 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 .
7.?dāng)?shù)列 SKIPIF 1 < 0 各項(xiàng)都為正數(shù),前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 ;
(2)求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)當(dāng) SKIPIF 1 < 0 時(shí),結(jié)合條件可得 SKIPIF 1 < 0 ,即可得 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),經(jīng)驗(yàn)證可得 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),從而數(shù)列 SKIPIF 1 < 0 是首項(xiàng)為2公差為3的等差數(shù)列,可得出答案.
(2) SKIPIF 1 < 0 用裂項(xiàng)相消可得答案.
【詳解】(1)當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 各項(xiàng)都為正數(shù),所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ).
又因?yàn)?SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ),
所以數(shù)列 SKIPIF 1 < 0 是首項(xiàng)為2公差為3的等差數(shù)列,故 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
8.等差數(shù)列 SKIPIF 1 < 0 各項(xiàng)都為正數(shù), SKIPIF 1 < 0 , SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 ;
(2)求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)由 SKIPIF 1 < 0 可得 SKIPIF 1 < 0 ,
即可得 SKIPIF 1 < 0 ,再結(jié)合 SKIPIF 1 < 0 ,即可得 SKIPIF 1 < 0 是等差數(shù)列,進(jìn)而求得 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)利用裂項(xiàng)求和即可, SKIPIF 1 < 0 .
【詳解】(1)當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 各項(xiàng)都為正數(shù),所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 .
又因?yàn)?SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,
所以數(shù)列 SKIPIF 1 < 0 是首項(xiàng)為2,公差為3的等差數(shù)列,所以 SKIPIF 1 < 0 .
(2)因?yàn)?SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
9.已知數(shù)列 SKIPIF 1 < 0 是等差數(shù)列,若 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比數(shù)列,數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若數(shù)列 SKIPIF 1 < 0 為正項(xiàng)等差數(shù)列,設(shè) SKIPIF 1 < 0 ,求證:數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)證明見(jiàn)解析.
【分析】(1) SKIPIF 1 < 0 是等差數(shù)列,設(shè)公差為 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比數(shù)列,列方程解出公差,進(jìn)而得出數(shù)列 SKIPIF 1 < 0 ;當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,與原式作差得數(shù)列 SKIPIF 1 < 0 ;
(2) SKIPIF 1 < 0 ,利用裂項(xiàng)相消法計(jì)算出放縮后的數(shù)列和,即可證得不等式成立.
【詳解】(1)∵數(shù)列 SKIPIF 1 < 0 是等差數(shù)列,設(shè)公差為 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,
與原式作差得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,驗(yàn)證得 SKIPIF 1 < 0 滿足通項(xiàng),故 SKIPIF 1 < 0 .
(2)因?yàn)閿?shù)列 SKIPIF 1 < 0 為正項(xiàng)等差數(shù)列,由(1)可知 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ,
即 SKIPIF 1 < 0 ,不等式得證.
10.設(shè)數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 成等差數(shù)列,且 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若 SKIPIF 1 < 0 , SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,求使 SKIPIF 1 < 0 成立的最大正整數(shù) SKIPIF 1 < 0 的值.
【答案】(1) SKIPIF 1 < 0 ;(2)8.
【分析】(1)本題首先可根據(jù) SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 成等差數(shù)列得出 SKIPIF 1 < 0 以及 SKIPIF 1 < 0 ,然后兩式相減,得出 SKIPIF 1 < 0 ,最后根據(jù) SKIPIF 1 < 0 求出 SKIPIF 1 < 0 ,即可求出 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)本題可根據(jù)題意得出 SKIPIF 1 < 0 并將其轉(zhuǎn)化為 SKIPIF 1 < 0 ,然后通過(guò)裂項(xiàng)相消法求和得出 SKIPIF 1 < 0 ,最后根據(jù) SKIPIF 1 < 0 得出 SKIPIF 1 < 0 ,通過(guò)計(jì)算即可得出結(jié)果.
【詳解】(1)因?yàn)?SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 成等差數(shù)列,所以 SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 ,有 SKIPIF 1 < 0 ,
兩式相減,可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
由題意易知 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 是公比為2的等比數(shù)列, SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 的通項(xiàng)公式為 SKIPIF 1 < 0 .
(2)因?yàn)?SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 成立的最大正整數(shù) SKIPIF 1 < 0 的值為8.
11.等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 為整數(shù),且 SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 SKIPIF 1 < 0 .
【分析】(1)根據(jù)條件,可得數(shù)列 SKIPIF 1 < 0 的公差 SKIPIF 1 < 0 為整數(shù),且 SKIPIF 1 < 0 ,利用等差數(shù)列通項(xiàng)公式,可得 SKIPIF 1 < 0 的關(guān)系,即可求得d的值,代入公式即可得答案;
(2)由知: SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 的表達(dá)式,利用裂項(xiàng)相消法求和即可得答案.
【詳解】(1)由 SKIPIF 1 < 0 , SKIPIF 1 < 0 為整數(shù)知,等差數(shù)列 SKIPIF 1 < 0 的公差 SKIPIF 1 < 0 為整數(shù),
又 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 ,即: SKIPIF 1 < 0 解得: SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 為整數(shù),所以 SKIPIF 1 < 0 ,所以等差數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式為: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)由(1)知: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
【點(diǎn)睛】本題考查數(shù)列求通項(xiàng),裂項(xiàng)相消法求前n項(xiàng)和,常見(jiàn)的裂項(xiàng)技巧:
(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 ;
(3) SKIPIF 1 < 0 ;(4) SKIPIF 1 < 0 SKIPIF 1 < 0 ;裂項(xiàng)時(shí),容易出現(xiàn)多項(xiàng)或丟項(xiàng)的問(wèn)題,需注意,考查分析理解,計(jì)算求值的能力,屬中檔題.
12.給出下列三個(gè)條件:① SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等差數(shù)列;② SKIPIF 1 < 0 ;.③對(duì)于 SKIPIF 1 < 0 ,點(diǎn) SKIPIF 1 < 0 均在函數(shù) SKIPIF 1 < 0 的圖像上,其中 SKIPIF 1 < 0 為常數(shù).請(qǐng)從這三個(gè)條件中任選一個(gè)補(bǔ)充在下面的問(wèn)題中,并求解.
設(shè) SKIPIF 1 < 0 是一個(gè)公比為 SKIPIF 1 < 0 的等比數(shù)列,且它的首項(xiàng) SKIPIF 1 < 0 , (填所選條件序號(hào)).
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)令 SKIPIF 1 < 0 ,設(shè)數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0
【答案】選擇見(jiàn)解析;(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)若選①:解得 SKIPIF 1 < 0 ,即得數(shù)列的通項(xiàng);若選②:解 SKIPIF 1 < 0 得公比,即得數(shù)列的通項(xiàng);若選③:求出 SKIPIF 1 < 0 ,即得數(shù)列的通項(xiàng);
(2)求得 SKIPIF 1 < 0 ,再利用裂項(xiàng)相消求出數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 .
【詳解】(1)若選①:因?yàn)?SKIPIF 1 < 0 成等差數(shù)列,所以 SKIPIF 1 < 0 .
又因?yàn)閿?shù)列 SKIPIF 1 < 0 是等比數(shù)列,即 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍去)
又 SKIPIF 1 < 0 ,所以數(shù)列 SKIPIF 1 < 0 是首項(xiàng)為1,公比為2的等比數(shù)列,所以數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式 SKIPIF 1 < 0
若選②: SKIPIF 1 < 0 ,因?yàn)?SKIPIF 1 < 0 是公比為 SKIPIF 1 < 0 的等比數(shù)列,
所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍去)
所以數(shù)列 SKIPIF 1 < 0 是首項(xiàng)為1,公比為2的等比數(shù)列,所以數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式為 SKIPIF 1 < 0
若選③:點(diǎn) SKIPIF 1 < 0 均在函數(shù) SKIPIF 1 < 0 的圖像上,所以 SKIPIF 1 < 0 ,又因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
所以數(shù)列 SKIPIF 1 < 0 是首項(xiàng)為1,公比為2的等比數(shù)列,所以數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式 SKIPIF 1 < 0
(2)證明:因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 .
13.已知等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式 SKIPIF 1 < 0 ;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)設(shè)等差數(shù)列 SKIPIF 1 < 0 的公差為 SKIPIF 1 < 0 ,根據(jù)已知條件可得出關(guān)于 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的方程組,解出這兩個(gè)量的值,利用等差數(shù)列的通項(xiàng)公式可求得數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)求得 SKIPIF 1 < 0 ,利用裂項(xiàng)相消法可求得 SKIPIF 1 < 0 .
【詳解】(1)設(shè)等差數(shù)列 SKIPIF 1 < 0 的公差為 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
所以, SKIPIF 1 < 0 ,故數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式 SKIPIF 1 < 0 ;
(2)由(1)可得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 .
14.已知等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比數(shù)列.
(1)求 SKIPIF 1 < 0 和 SKIPIF 1 < 0 ;
(2)設(shè) SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,求證: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)證明見(jiàn)解析.
【分析】
(1)設(shè)等差數(shù)列 SKIPIF 1 < 0 的公差為 SKIPIF 1 < 0 ,首項(xiàng)為 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 求出 SKIPIF 1 < 0 , SKIPIF 1 < 0 即可求解;
(2)由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,利用裂項(xiàng)相消求和求出 SKIPIF 1 < 0 ,再利用不等式的性質(zhì)和數(shù)列的單調(diào)性即可求證.
【詳解】解:(1)設(shè)等差數(shù)列 SKIPIF 1 < 0 的公差為 SKIPIF 1 < 0 ,首項(xiàng)為 SKIPIF 1 < 0 ,由 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,
則 SKIPIF 1 < 0 所以 SKIPIF 1 < 0 解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
(2)因?yàn)?SKIPIF 1 < 0 .所以 SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 單調(diào)遞增.所以 SKIPIF 1 < 0 ,綜上, SKIPIF 1 < 0 .
15.已知數(shù)列 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)若 SKIPIF 1 < 0 為等比數(shù)列,公比 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值及數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若 SKIPIF 1 < 0 為等差數(shù)列,且 SKIPIF 1 < 0 ,證明 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0 ;(2)證明見(jiàn)解析.
【分析】(1)先由題設(shè)求得 SKIPIF 1 < 0 ,從而求得 SKIPIF 1 < 0 及 SKIPIF 1 < 0 ,然后求得 SKIPIF 1 < 0 ,再利用疊加法求得 SKIPIF 1 < 0 即可;
(2)先由題設(shè)求得等差數(shù)列 SKIPIF 1 < 0 的公差 SKIPIF 1 < 0 ,然后求得 SKIPIF 1 < 0 及 SKIPIF 1 < 0 ,再利用累乘法求得 SKIPIF 1 < 0 ,最后利用裂項(xiàng)相消法求得 SKIPIF 1 < 0 ,即可證明結(jié)論.
【詳解】
(1)解:由題設(shè)知: SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 或 SKIPIF 1 < 0 (舍 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
將以上式子相加可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 也適合, SKIPIF 1 < 0 ;
(2)證明: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 公差 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
將以上式子相乘可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 也適合上式,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
16.已知數(shù)列 SKIPIF 1 < 0 為正項(xiàng)等比數(shù)列, SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的取值范圍.
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)先求出 SKIPIF 1 < 0 ,再得到 SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,兩式相減得 SKIPIF 1 < 0 ;
(2)由題得 SKIPIF 1 < 0 ,利用裂項(xiàng)相消求出 SKIPIF 1 < 0 ,再利用單調(diào)性求解.
【詳解】(1)令 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
設(shè)數(shù)列 SKIPIF 1 < 0 的公比為 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 ,①
當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,②
由①-②得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí)也成立,所以 SKIPIF 1 < 0 ,
(2)由(1)可知 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 隨著 SKIPIF 1 < 0 的增大而增大,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 的取值范圍是 SKIPIF 1 < 0 .
17.已知數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ( SKIPIF 1 < 0 ).
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)若 SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,求證: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2)證明見(jiàn)解析.
【分析】(1)根據(jù) SKIPIF 1 < 0 得 SKIPIF 1 < 0 兩式作差,得出 SKIPIF 1 < 0 ,再由等比數(shù)列的通項(xiàng)公式,即可求出結(jié)果;
(2)先由(1)得到 SKIPIF 1 < 0 ,由裂項(xiàng)相消的方法求出 SKIPIF 1 < 0 ,進(jìn)而可得結(jié)論成立.
【詳解】(1)∵ SKIPIF 1 < 0 ① ∴ SKIPIF 1 < 0 ②, ①-②得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
∴數(shù)列 SKIPIF 1 < 0 是首項(xiàng)和公比都為 SKIPIF 1 < 0 的等比數(shù)列,于是 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)由(1)得 SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 .
又易知函數(shù) SKIPIF 1 < 0 在 SKIPIF 1 < 0 上是增函數(shù),且 SKIPIF 1 < 0 ,而 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
18.?dāng)?shù)列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求證:數(shù)列 SKIPIF 1 < 0 是等比數(shù)列,并求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 .求證: SKIPIF 1 < 0 .
【答案】(1)證明見(jiàn)解析, SKIPIF 1 < 0 ;(2)證明見(jiàn)解析.
【分析】(1)由 SKIPIF 1 < 0 ,化簡(jiǎn)得到 SKIPIF 1 < 0 ,根據(jù)等比數(shù)列的定義,得到數(shù)列 SKIPIF 1 < 0 為等比數(shù)列,進(jìn)而求得 SKIPIF 1 < 0 .
(2)由(1)求得 SKIPIF 1 < 0 ,結(jié)合裂項(xiàng)法,求得數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,即可作出證明.
【詳解】(1)由題意,數(shù)列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
又由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 是以2為首項(xiàng)2為公比的等比數(shù)列,
由等比數(shù)列的通項(xiàng)公式,可得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
(2)由(1)可得 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為
SKIPIF 1 < 0 ,
又因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
19.已知等比數(shù)列 SKIPIF 1 < 0 的公比 SKIPIF 1 < 0 ,且滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ; SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】
(1)根據(jù)題干已知條件可列出關(guān)于首項(xiàng) SKIPIF 1 < 0 與公比 SKIPIF 1 < 0 的方程組,解出 SKIPIF 1 < 0 與 SKIPIF 1 < 0 的值,即可計(jì)算出數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式,再根據(jù)公式 SKIPIF 1 < 0 進(jìn)行計(jì)算可得數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)先分 SKIPIF 1 < 0 為奇數(shù)和 SKIPIF 1 < 0 為偶數(shù)分別計(jì)算出數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式,在求前 SKIPIF 1 < 0 項(xiàng)和時(shí),對(duì)奇數(shù)項(xiàng)運(yùn)用裂項(xiàng)相消法求和,對(duì)偶數(shù)項(xiàng)運(yùn)用錯(cuò)位相減法求和,最后相加進(jìn)行計(jì)算即可得到前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【詳解】(1)依題意,由 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 ,所以解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
對(duì)于數(shù)列 SKIPIF 1 < 0 :當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,
SKIPIF 1 < 0 當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 也滿足上式, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)由題意及(1),可知:
當(dāng) SKIPIF 1 < 0 為奇數(shù)時(shí), SKIPIF 1 < 0 ,
當(dāng) SKIPIF 1 < 0 為偶數(shù)時(shí), SKIPIF 1 < 0 ,令 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則
SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
兩式相減,可得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 SKIPIF 1 < 0 .
20.已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,S1=1且S1,S3,S10-1成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= SKIPIF 1 < 0 ,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求使得Tn> SKIPIF 1 < 0 成立的n的最小值.
【答案】(1) SKIPIF 1 < 0 ;(2)6.
【分析】(1)由 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比數(shù)列,得 SKIPIF 1 < 0 ,再利用首項(xiàng)和等差數(shù)列的通項(xiàng)公式可得答案;
(2)由(1)可得 SKIPIF 1 < 0 ,再利用裂項(xiàng)相消法求出 SKIPIF 1 < 0 ,然后解不等式可求出 SKIPIF 1 < 0 的最大值.
【詳解】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 成等比數(shù)列, SKIPIF 1 < 0 ,設(shè)等差數(shù)列 SKIPIF 1 < 0 的公差為 SKIPIF 1 < 0 ,
則 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 公差 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2)由(1)知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 可得: SKIPIF 1 < 0 ,故要使得 SKIPIF 1 < 0 成立,則 SKIPIF 1 < 0 的最小值為6.
21.等差數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和為 SKIPIF 1 < 0 ,已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 為整數(shù),當(dāng)且僅當(dāng) SKIPIF 1 < 0 時(shí) SKIPIF 1 < 0 取得最大值.
(1)求 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)根據(jù)條件列出關(guān)于 SKIPIF 1 < 0 的不等式,再根據(jù) SKIPIF 1 < 0 為整數(shù)確定出 SKIPIF 1 < 0 的值,從而 SKIPIF 1 < 0 的通項(xiàng)公式可求;
(2)先計(jì)算出 SKIPIF 1 < 0 的通項(xiàng)公式,然后采用裂項(xiàng)相消的方法求解出 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
【詳解】(1)由題意可知 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , ∴ SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
∵ SKIPIF 1 < 0 為整數(shù),∴ SKIPIF 1 < 0 ,∴ SKIPIF 1 < 0 的通項(xiàng)公式為 SKIPIF 1 < 0 .
(2)∵ SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0 SKIPIF 1 < 0
SKIPIF 1 < 0 .
22.已知正項(xiàng)數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 ,且滿足: SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,求數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 .
(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)根據(jù) SKIPIF 1 < 0 寫(xiě)出 SKIPIF 1 < 0 ,通過(guò)作差以及化簡(jiǎn)說(shuō)明 SKIPIF 1 < 0 為等差數(shù)列,并求解出通項(xiàng)公式;
(2)將 SKIPIF 1 < 0 的通項(xiàng)公式變形為 SKIPIF 1 < 0 ,采用裂項(xiàng)相消法求解出 SKIPIF 1 < 0 的結(jié)果.
【詳解】(1)由 SKIPIF 1 < 0 又有 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,兩式相減得 SKIPIF 1 < 0
因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 又 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,滿足 SKIPIF 1 < 0
因此數(shù)列 SKIPIF 1 < 0 是等差數(shù)列,首項(xiàng) SKIPIF 1 < 0 為 SKIPIF 1 < 0 ,公差 SKIPIF 1 < 0 為 SKIPIF 1 < 0 所以 SKIPIF 1 < 0
(2) SKIPIF 1 < 0 SKIPIF 1 < 0
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 .
23.已知各項(xiàng)均為正數(shù)的等差數(shù)列 SKIPIF 1 < 0 和等比數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 , SKIPIF 1 < 0
(1)求數(shù)列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的通項(xiàng)公式.
(2)若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)根據(jù)已知條件求得等差數(shù)列 SKIPIF 1 < 0 的公差 SKIPIF 1 < 0 、等比數(shù)列 SKIPIF 1 < 0 的公比 SKIPIF 1 < 0 ,由此求得數(shù)列 SKIPIF 1 < 0 , SKIPIF 1 < 0 的通項(xiàng)公式.
(2)利用裂項(xiàng)求和法求得 SKIPIF 1 < 0 .
【詳解】(1)因?yàn)?SKIPIF 1 < 0 為等差數(shù)列,且 SKIPIF 1 < 0 ,所以可設(shè)公差為d,
則 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
又等差數(shù)列 SKIPIF 1 < 0 各項(xiàng)均為正數(shù),所以 SKIPIF 1 < 0 不合題意,舍去,所以 SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 為等比數(shù)列,且 SKIPIF 1 < 0 ,所以可設(shè)公比為 SKIPIF 1 < 0 ,則 SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,滿足各項(xiàng)均為正數(shù),所以 SKIPIF 1 < 0 .
(2)由(1)知 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 .
24.已知 SKIPIF 1 < 0 為等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和,滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 為數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和,滿足 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(1)求 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 ,若數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的最大值.
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)9.
【分析】(1)根據(jù)等差數(shù)列基本量運(yùn)算,可得數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式,根據(jù)遞推關(guān)系 SKIPIF 1 < 0 ,多遞推一項(xiàng)再相減,即可得答案;
(2)求出 SKIPIF 1 < 0 ,再進(jìn)行等差數(shù)列求和及裂項(xiàng)相消求和;
【詳解】(1) SKIPIF 1 < 0 為等差數(shù)列,因?yàn)?SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 .
因?yàn)?SKIPIF 1 < 0 ,所以當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ;
當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 .綜上, SKIPIF 1 < 0 , SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0
SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 為關(guān)于 SKIPIF 1 < 0 的遞增數(shù)列,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 的最大值為9.
25.已知數(shù)列 SKIPIF 1 < 0 前n項(xiàng)和 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)求數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和 SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 .
【分析】(1)根據(jù) SKIPIF 1 < 0 求得數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式.
(2)利用裂項(xiàng)求和法求得 SKIPIF 1 < 0 .
【詳解】(1)當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 , 當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí)上式也符合. 所以 SKIPIF 1 < 0 .
(2)由題意知,可設(shè) SKIPIF 1 < 0
SKIPIF 1 < 0 則 SKIPIF 1 < 0 .
三、填空題
26.已知數(shù)列 SKIPIF 1 < 0 滿足 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,則數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ________.
【答案】 SKIPIF 1 < 0
【分析】先根據(jù)前 SKIPIF 1 < 0 項(xiàng)和與通項(xiàng)的關(guān)系得 SKIPIF 1 < 0 ,進(jìn)而得 SKIPIF 1 < 0 ,再根據(jù)裂項(xiàng)相消求和法求解即可得答案.
【詳解】因?yàn)?SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 SKIPIF 1 < 0 ,兩式相減得 SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí)也滿足,
故 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 .故答案為: SKIPIF 1 < 0
27.已知等差數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和為 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,則數(shù)列 SKIPIF 1 < 0 的前2020項(xiàng)和為_(kāi)________
【答案】 SKIPIF 1 < 0 .
【分析】
先根據(jù)等差數(shù)列的通項(xiàng)公式和求和公式可列出關(guān)于a1和d的方程組,解出a1和d的值,即可得到數(shù)列{an}的通項(xiàng)公式,即求出數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式,再利用裂項(xiàng)相消法求出前2020項(xiàng)和.
【詳解】由題意,設(shè)等差數(shù)列{an}的公差為d,則 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
∴數(shù)列{an}的通項(xiàng)公式為an=1+(n﹣1)×1=n,n∈N*.
∴ SKIPIF 1 < 0 = SKIPIF 1 < 0 .設(shè)數(shù)列 SKIPIF 1 < 0 的前n項(xiàng)和為T(mén)n,
則Tn SKIPIF 1 < 0 SKIPIF 1 < 0 =2(1 SKIPIF 1 < 0 )
=2(1 SKIPIF 1 < 0 ) SKIPIF 1 < 0 .∴T2020 SKIPIF 1 < 0 .故答案為: SKIPIF 1 < 0 .
28.已知 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和 SKIPIF 1 < 0 ,數(shù)列 SKIPIF 1 < 0 的前5項(xiàng)和 SKIPIF 1 < 0 ______.
【答案】 SKIPIF 1 < 0
【分析】根據(jù)當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí)也滿足,
故 SKIPIF 1 < 0 ,而 SKIPIF 1 < 0 ,利用裂項(xiàng)相消法即可 得解.
【詳解】當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 滿足上式,
故 SKIPIF 1 < 0 ,所以 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,故答案為: SKIPIF 1 < 0
29.在① SKIPIF 1 < 0 ;② SKIPIF 1 < 0 為等差數(shù)列,其中 SKIPIF 1 < 0 成等比數(shù)列;③ SKIPIF 1 < 0 這三個(gè)條件中任選一個(gè),補(bǔ)充到下面的問(wèn)題中,然后解答補(bǔ)充完整的題目.已知數(shù)列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ______.
(1)求數(shù)列 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)設(shè) SKIPIF 1 < 0 為數(shù)列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 項(xiàng)和,求證: SKIPIF 1 < 0 .
注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.
【答案】(1) SKIPIF 1 < 0 ;(2)證明見(jiàn)解析.
【分析】(1)若選條件①, SKIPIF 1 < 0 ,由數(shù)列的推式可得 SKIPIF 1 < 0 ,從而得數(shù)列 SKIPIF 1 < 0 是以1為首項(xiàng),3為公差的等差數(shù)列,由等差數(shù)列的通項(xiàng)公式可求得 SKIPIF 1 < 0 的通項(xiàng)公式;
若選擇②,設(shè)數(shù)列 SKIPIF 1 < 0 的公差為d,由等差數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì)可得方程 SKIPIF 1 < 0 ,解之可得 SKIPIF 1 < 0 的通項(xiàng)公式;
若選擇③,由 SKIPIF 1 < 0 得,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,兩式相減可求得 SKIPIF 1 < 0 ,從而求得 SKIPIF 1 < 0 的通項(xiàng)公式;
(2)由(1)得 SKIPIF 1 < 0 ,運(yùn)用裂項(xiàng)求和法可得證.
【詳解】(1)若選條件①, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 ,所以數(shù)列 SKIPIF 1 < 0 是以1為首項(xiàng),3為公差的等差數(shù)列,所以 SKIPIF 1 < 0 ;
若選擇②,設(shè)數(shù)列 SKIPIF 1 < 0 的公差為d,則 SKIPIF 1 < 0 ,
因?yàn)?SKIPIF 1 < 0 成等比數(shù)列, SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ;
當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,此時(shí) SKIPIF 1 < 0 不能構(gòu)成等比數(shù)列,所以 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,
若選擇③,由 SKIPIF 1 < 0 得,當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 ,
兩式相減得, SKIPIF 1 < 0 所以 SKIPIF 1 < 0 ,
當(dāng) SKIPIF 1 < 0 時(shí), SKIPIF 1 < 0 也適合上式,所以 SKIPIF 1 < 0 ,
(2)由(1)得 SKIPIF 1 < 0 ,
所以 SKIPIF 1 < 0 ,故 SKIPIF 1 < 0
這是一份新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)突破專(zhuān)題09 數(shù)列求和方法之裂項(xiàng)相消法(2份打包,原卷版+解析版),文件包含新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)突破專(zhuān)題09數(shù)列求和方法之裂項(xiàng)相消法原卷版doc、新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)突破專(zhuān)題09數(shù)列求和方法之裂項(xiàng)相消法解析版doc等2份試卷配套教學(xué)資源,其中試卷共41頁(yè), 歡迎下載使用。
這是一份高考數(shù)學(xué)一輪復(fù)習(xí)全套word講義專(zhuān)題09數(shù)列求和方法之裂項(xiàng)相消法(原卷版+解析),共41頁(yè)。試卷主要包含了單選題,解答題,填空題等內(nèi)容,歡迎下載使用。
這是一份2024年新高考數(shù)學(xué)培優(yōu)專(zhuān)練09 數(shù)列求和方法之裂項(xiàng)相消法(原卷版+解析),文件包含專(zhuān)題09數(shù)列求和方法之裂項(xiàng)相消法原卷版docx、專(zhuān)題09數(shù)列求和方法之裂項(xiàng)相消法教師版docx等2份試卷配套教學(xué)資源,其中試卷共41頁(yè), 歡迎下載使用。
高考數(shù)學(xué)二輪復(fù)習(xí)專(zhuān)題30 數(shù)列中裂項(xiàng)相消法求和問(wèn)題(2份打包,教師版+原卷版)
2022年新高考數(shù)學(xué)二輪提升數(shù)列專(zhuān)題第8講《數(shù)列求和裂項(xiàng)相消法》(2份打包,解析版+原卷版)
新高考數(shù)學(xué)培優(yōu)專(zhuān)練09 數(shù)列求和方法之裂項(xiàng)相消法
(新高考專(zhuān)用)2021年新高考數(shù)學(xué)難點(diǎn):專(zhuān)題09 數(shù)列求和方法之裂項(xiàng)相消法
微信掃碼,快速注冊(cè)
注冊(cè)成功