



河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年下學(xué)期九年級開學(xué)摸底考試數(shù)學(xué)試題(解析版)
展開
這是一份河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年下學(xué)期九年級開學(xué)摸底考試數(shù)學(xué)試題(解析版),共22頁。試卷主要包含了選擇題,解答題等內(nèi)容,歡迎下載使用。
1. 下列二次根式中,與是同類二次根式的是( )
A. B. C. D.
【答案】B
【解析】
【分析】本題考查最簡二次根式,同類二次根式.將各個二次根式化簡,再看被開方數(shù)即可得出答案.
【詳解】解:因?yàn)椋?,,?br>所以與是同類二次根式,
故選:B.
2. 不透明的口袋中裝有10個黃球和若干個白球,它們除顏色外完全相同,通過多次摸球試驗(yàn)后發(fā)現(xiàn),摸到白球的頻率穩(wěn)定在0.6附近,估計(jì)口袋中白球大約有( )
A. 12個B. 15個C. 18個D. 20個
【答案】B
【解析】
【分析】本題主要考查了利用頻率估計(jì)概率.設(shè)口袋中白球大約有x個,根據(jù)概率公式列出算式,再進(jìn)行計(jì)算即可得出答案.
【詳解】解:設(shè)口袋中白球大約有x個,
∵摸到白色球的頻率穩(wěn)定在0.6左右,
∴,
解得:,
經(jīng)檢驗(yàn),是原方程的解,
∴估計(jì)口袋中白球大約有15個.
故選:B
3. 關(guān)于x的一元二次方程的根的情況是( )
A. 有兩個不相等的實(shí)數(shù)根B. 有兩個相等的實(shí)數(shù)根
C. 只有一個實(shí)數(shù)根D. 沒有實(shí)數(shù)根
【答案】A
【解析】
【分析】此題考查了一元二次方程根的判別式,整理方程得到一般形式,計(jì)算根的判別式即可得到答案.
【詳解】解:整理得,
∵,
∴原方程有兩個不相等的實(shí)數(shù)根,
故選:A
4. 將一副三角尺按如圖方式疊放在一起,邊與相交于點(diǎn),則的值為( )
A. B. C. D.
【答案】C
【解析】
【分析】本題考查了相似三角形的判定和性質(zhì),直角三角形的性質(zhì).由直角三角形的性質(zhì)可得,,,,可證,由相似三角形的性質(zhì)可求解.
【詳解】解:,,,
,,,,
,
,
故選:C.
5. 圍棋起源于中國,棋子分黑白兩色.一個不透明的盒子中裝有1個黑色棋子和2個白色棋子,每個棋子除顏色外都相同,從中隨機(jī)摸出一個棋子,記下顏色后放回攪勻,再從中隨機(jī)摸出一個棋子,則兩次摸到相同顏色的棋子的概率是( )
A. B. C. D.
【答案】D
【解析】
【分析】本題考查列表法與樹狀圖法.列表可得出所有等可能的結(jié)果數(shù)以及兩次摸到相同顏色的棋子的結(jié)果數(shù),再利用概率公式可得出答案.
【詳解】解:列表如下:
共有9種等可能的結(jié)果,其中兩次摸到相同顏色的棋子的結(jié)果有5種,
兩次摸到相同顏色的棋子的概率為.
故選:D.
6. 如圖,四邊形內(nèi)接于,若,則的度數(shù)為( )
A. B. C. D.
【答案】D
【解析】
【分析】本題考查的是圓內(nèi)接四邊形的性質(zhì)、圓周角定理.根據(jù)圓內(nèi)接四邊形的性質(zhì)“圓內(nèi)接四邊形的對角互補(bǔ)”求出,再根據(jù)圓周角定理求出.
【詳解】解:四邊形內(nèi)接于,
,
,
,
由圓周角定理得:,
故選:D.
7. 二次函數(shù)的圖象如圖所示,無論x為何值時,的條件是( )
A. ,B. ,
C. ,D. ,
【答案】C
【解析】
【分析】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系.根據(jù)函數(shù)圖象,結(jié)合二次函數(shù)與一元二次方程的關(guān)系即可解決問題.
【詳解】解:由題知,
因?yàn)閽佄锞€開口向上,
所以.
又因?yàn)閽佄锞€與軸沒有交點(diǎn),
所以.
故選:C.
8. 如圖,在紙上剪下一個圓形和一個扇形的紙片,使之恰好能圍成一個圓錐模型,若圓的半徑為1,扇形的圓心角等于90°,則扇形的半徑是( )
A. 2B. 4C. 6D. 8
【答案】B
【解析】
【分析】本題考查了求弧長,圓錐的側(cè)面展開圖;設(shè)扇形的半徑為r,利用圓錐底面周長等于圓錐側(cè)面展開圖扇形的弧長,即可求解.
【詳解】解:設(shè)扇形的半徑為r,
由題意得:,
解得:;
故選:B.
9. 如圖,在中,,,.是邊上一動點(diǎn),過點(diǎn)作交于點(diǎn),為線段的中點(diǎn),當(dāng)平分時,的長度是( )
A. B. C. D.
【答案】A
【解析】
【分析】本題考查相似三角形的判定和性質(zhì),平行線分線段成比例,含30度角的直角三角形,平行線的性質(zhì),角平分線定義.由平行線的性質(zhì)推出,由角平分線定義得到,因此,得到,令,得到,判定,推出,由含30度角的直角三角形的性質(zhì)得到,求出,得到,求出,得到,由平行線分線段成比例定理推出,即可求出.
【詳解】解:,
,
平分時,
,
,
,
是的中點(diǎn),
,
令,
,
,
,
,
,,,
,
,
,
,
,
,
,
,
,
.
故選:A.
10. 拋物線與直線交于,兩點(diǎn),若,則直線一定經(jīng)過( )
A. 第一、二象限B. 第二、三象限C. 第三、四象限D(zhuǎn). 第一、四象限
【答案】B
【解析】
【分析】本題考查了二次函數(shù)與系數(shù)的關(guān)系.根據(jù)已知條件可得出,再利用根與系數(shù)的關(guān)系,分情況討論即可.
【詳解】解:拋物線與直線交于,兩點(diǎn),
,
,
,
,
當(dāng),時,直線經(jīng)過第一、二、三象限,
當(dāng),時,直線經(jīng)過第二、三、四象限,
綜上,直線一定經(jīng)過二、三象限.
故選:B.
二、填空題(每小題3分,共15分)
11. 寫出一個開口向下且過的拋物線的表達(dá)式______.
【答案】答案不唯一,例如:
【解析】
【分析】本題主要考查二次函數(shù)的解析式,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵;由拋物線開口向下可知,且過點(diǎn),然后問題可求解.
【詳解】解:由拋物線開口向下可知,且與y軸交于點(diǎn),因此符合條件的拋物線表達(dá)式可以為;
故答案為(答案不唯一).
12. 《水滸傳》是中學(xué)生必讀名著之一.王林將水滸人物宋江和李逵的畫像及其綽號制成4張無差別卡片(除圖案和文字不同外,其他完全相同).將卡片背面朝上洗勻,從中隨機(jī)抽取兩張,則抽取的卡片人物畫像與綽號完全對應(yīng)的概率是________.
【答案】
【解析】
【分析】本題考查了用列舉法求簡單事件的概率.根據(jù)畫樹狀圖法即可求解.
【詳解】解:將四張卡片從左到右依次記作,根據(jù)題意,畫樹狀圖如下:
由樹狀圖,可知共有12種等可能的結(jié)果,其中抽取的卡片人物畫像與綽號完全對應(yīng)的結(jié)果有4種,故(抽取的卡片人物畫像與綽號完全對應(yīng)).
故答案為:.
13. 如圖,中,弦,垂足為點(diǎn),連接,若,,則的值為_____.
【答案】##0.8
【解析】
【分析】本題考查的是垂徑定理“平分弦的直徑平分這條弦,并且平分弦所對的兩條弧”.先根據(jù)垂徑定理得出的長,再根據(jù)勾股定理得到,然后根據(jù)三角函數(shù)的定義即可得到結(jié)論.
【詳解】解:弦,,,
,
,
.
故答案為:.
14. 如圖,是拋物線在第四象限的圖象上一點(diǎn),過點(diǎn)分別向軸和軸作垂線,垂足分別為、,則四邊形周長的最大值為______.
【答案】16
【解析】
【分析】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)圖象上點(diǎn)的坐標(biāo)滿足其解析式.也考查了二次函數(shù)的性質(zhì).依據(jù)題意,設(shè)根據(jù)矩形的周長公式得到,從而根據(jù)二次函數(shù)的性質(zhì)來求最值即可.
【詳解】解:設(shè),
四邊形周長.
當(dāng)時,四邊形周長有最大值,最大值為16.
故答案為16.
15. 如圖,在中,,,,將繞點(diǎn)順時針旋轉(zhuǎn)得到,取的中點(diǎn),的中點(diǎn).則在旋轉(zhuǎn)過程中,線段的最小值________.
【答案】2.5
【解析】
【分析】本題主要考查旋轉(zhuǎn)的性質(zhì),直角三角形斜邊上的中線是斜邊的一半,三角形的三邊關(guān)系,解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì)。
連接,根據(jù)將繞頂點(diǎn)順時針旋轉(zhuǎn)得到,可得,,
由為的中點(diǎn),知,求出,當(dāng),,不能構(gòu)成三角形,且在上時,取最小值,此時.
【詳解】解:連接,如圖:
將繞頂點(diǎn)順時針旋轉(zhuǎn)得到,
,,
為的中點(diǎn),
,
,為中點(diǎn),
,
在中,,
當(dāng),,不能構(gòu)成三角形,且在上時,取最小值,此時,如圖:
的最小值為.
故答案:.
三、解答題(本大題共8個小題,滿分75分)
16. (1)計(jì)算:;
(2)解方程:.
【答案】(1)0;(2),.
【解析】
【分析】(1)根據(jù)特殊角的三角函數(shù)值、完全平方公式、二次根式的性質(zhì),進(jìn)行計(jì)算即可;
(2)用因式分解法解一元二次方程即可.
本題主要考查了實(shí)數(shù)的混合運(yùn)算和解一元二次方程,熟練掌握因式分解法、特殊角的三角函數(shù)值、完全平方公式、二次根式的性質(zhì),是解題的關(guān)鍵.
【詳解】解:(1)
;
(2)
解:,
解得:,.
17. 如圖,在中,,以為直徑的與交于點(diǎn),連接.
(1)求證:;
(2)若與相切,求的度數(shù);
(3)用無刻度的直尺和圓規(guī)作出劣弧的中點(diǎn)E.(不寫作法,保留作圖痕跡)
【答案】(1)證明見解析
(2)
(3)見解析
【解析】
【分析】(1)由圓周角定理得出,再由等腰三角形的性質(zhì)即可證明;
(2)由切線的性質(zhì)得出,由,得出是等腰直角三角形,即可求出;
(3)利用尺規(guī)作圖,作的平分線交于點(diǎn),則點(diǎn)即是劣弧的中點(diǎn).
【小問1詳解】
證明:是直徑,
,
.
,
;
【小問2詳解】
解:與相切,為直徑,
,
又,
是等腰直角三角形,
;
【小問3詳解】
解:如圖所示:
作的平分線交于點(diǎn),則點(diǎn)即是劣弧的中點(diǎn).
【點(diǎn)睛】本題考查了圓周角定理,等腰三角形的性質(zhì),圓的切線的性質(zhì),等腰直角三角形的性質(zhì),尺規(guī)作圖等知識.解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件.
18. 已知拋物線與x軸交于,兩點(diǎn),與y軸交于點(diǎn),其對稱軸與x軸交于點(diǎn)D,頂點(diǎn)為E.
(1)求拋物線的解析式;
(2)在圖中作出該函數(shù)的圖象并結(jié)合圖象回答:
①該拋物線的對稱軸為直線_______;
②該拋物線的最大值為_______.
(3)①若,則______;
②當(dāng)時,x取值范圍是______;
③方程的根是_____.
【答案】(1)
(2)圖形見解析,①,②4
(3)①0或2;②;③,
【解析】
【分析】本題主要考查了二次函數(shù)的圖象和性質(zhì),二次函數(shù)與一元二次方程根的關(guān)系,圖象法解一元二次不等式,熟練掌握二次函數(shù)的相關(guān)性質(zhì)是解題的關(guān)鍵.
(1)將,,代入,可得三元一次方程組,解方程組,即可得出函數(shù)表達(dá)式;
(2)經(jīng)過,,,,畫出函數(shù)圖象,即得所求圖象;再根據(jù)圖象,即可得到①,②答案;
(3)①若,則,求解方程即得答案;
②根據(jù)拋物線與x軸的交點(diǎn)坐標(biāo)與一元二次不等式的關(guān)系,即得答案;
③將方程變形為,再根據(jù)拋物線與x軸的交點(diǎn)與方程的根的關(guān)系,即可求得答案.
【小問1詳解】
將,,代入,
得,
解得,
拋物線的解析式為;
【小問2詳解】
解:,
拋物線的頂點(diǎn)為,
令,則,
,
經(jīng)過,,,,畫出函數(shù)圖象如圖所示:
由圖可知,①該拋物線的對稱軸為直線;
故答案為:.
②該拋物線的最大值為4;
故答案為:4.
【小問3詳解】
①若,則,
解得,;
故答案為:0或2.
②拋物線與x軸的交點(diǎn)為,,
方程的根為,,
,
拋物線開口向下,
當(dāng)時,x的取值范圍是;
故答案為:.
③,
,
整理得,
由題意,拋物線與x軸的交點(diǎn)為,,
方程的根為,,
即方程的根是,.
故答案為:,.
19. 如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知米,米,測點(diǎn)D到地面的距離米,到旗桿的水平距離米,求旗桿的高度.
【答案】旗桿的高度為14米.
【解析】
【分析】本題考查了相似三角形的應(yīng)用,矩形的判定與性質(zhì),主要利用了相似三角形對應(yīng)邊成比例.求出,根據(jù)相似三角形對應(yīng)邊成比例列式求出,再求出,然后根據(jù)旗桿的高度代入數(shù)據(jù)計(jì)算即可得解.
【詳解】解:,,
,
,
即,
解得,
,,,
,
四邊形是矩形,
,
(米).
答:旗桿的高度為14米.
20. 小穎家附近廣場中央計(jì)劃新建造個圓形的噴水池.在水池中央垂直于地面處安裝個柱子,在柱子頂端A處安裝一個噴頭向外噴水.水流在各個方向上沿形狀相同的拋物線路徑落下,如圖所示.已知柱子在水面以上部分的高度為,要求設(shè)計(jì)水流在距離柱子處達(dá)到距離水平面最高,且最高為.
(1)建立如圖所示的平面直角坐標(biāo)系,求水流拋物線在第一象限內(nèi)對應(yīng)的函數(shù)表達(dá)式(不要求寫自變量的取值范圍);
(2)若不計(jì)其他因素,則水池的半徑至少為多少米時,才能使噴出的水流不至于落到池外?
【答案】(1)
(2)
【解析】
【分析】本題考查了二次函數(shù)的實(shí)際應(yīng)用:
(1)根據(jù)已知得出二次函數(shù)的頂點(diǎn)坐標(biāo),即可利用頂點(diǎn)式得出二次函數(shù)解析式;
(2)令,求出x的值即可得到答案.
【小問1詳解】
解:由題意可知拋物線頂點(diǎn)為,
可設(shè)解析式為,過點(diǎn),即,
解得.
拋物線的解析式為:.
【小問2詳解】
解:由(1)可知:,
令,
.
解得或(舍去).
花壇半徑至少為.
21. 如圖,在中,,,的三條角平分線交于點(diǎn),過作的垂線分別交、于點(diǎn)、.
(1)直接寫出的度數(shù)為_______;
(2)寫出圖中的一對相似三角形并進(jìn)行證明(全等三角形除外);
(3)若,,請直接寫出的長為______.
【答案】(1)
(2)∽,證明見解析
(3)
【解析】
【分析】(1)根據(jù)平分,平分推出,,,然后根據(jù)三角形內(nèi)角和推出,代換即可得到,根據(jù)的度數(shù)即可求出;
(2)根據(jù)得到,根據(jù)平分求出的度數(shù),即可求出的度數(shù),推出,根據(jù)平分推出,即可判定;
(3)根據(jù)得到,根據(jù),和比例的基本性質(zhì)即可求出的長.
【小問1詳解】
解:平分,平分,
,,
,
,
又,
,
,
.
故答案為:;
【小問2詳解】
解:(答案不唯一).
證明:,
,
平分,
,
,
由(1)知,
,
平分,
,
;
【小問3詳解】
解:,
,
又,,
,
.
故答案為:.
【點(diǎn)睛】本題是三角形相似綜合題,主要考查三角形角平分線定義,相似三角形的判定與性質(zhì),三角形的內(nèi)角和定理和外角性質(zhì),深入理解題意是解決問題的關(guān)鍵.
22. 界首市公安交警部門提醒市民,騎車出行必須嚴(yán)格遵守“一盔一帶”的規(guī)定.某頭盔經(jīng)銷商統(tǒng)計(jì)了某品牌頭盔4月份到6月份的銷量,該品牌頭盔4月份銷售150個,6月份銷售216個,且從4月份到6月份銷售量的月增長率相同.
(1)求該品牌頭盔銷售量的月增長率;
(2)若此種頭盔的進(jìn)價為30元/個,經(jīng)測算在市場中,當(dāng)售價為40元/個時,月銷售量為600個,若在此基礎(chǔ)上售價每上漲1元,則月銷售量將減少10個.
①為使月銷售利潤達(dá)到10000元,而且盡可能讓顧客得到實(shí)惠,則該品牌頭盔的實(shí)際售價應(yīng)定為多少元/個?.
②要使銷售該品牌頭盔每月獲得的利潤最大,則該品牌頭盔每個的售價為 元?
【答案】(1)該品牌頭盔銷售量的月增長率為
(2)①該品牌頭盔的實(shí)際售價應(yīng)定為50元;②65
【解析】
【分析】(1)設(shè)該品牌頭盔銷售量的月增長率為,根據(jù)“從4月份到6月份銷售量的月增長率相同”列一元二次方程,求解即可;
(2)①設(shè)該品牌頭盔的實(shí)際售價為a元/個,根據(jù)月銷售利潤每個頭盔的利潤月銷售量,即可得出關(guān)于a的一元二次方程,解之即可求出答案.
②設(shè)該品牌頭盔每月獲得的利潤為y元,則,根據(jù)二次函數(shù)的性質(zhì)即可求解.
【小問1詳解】
解:設(shè)該品牌頭盔銷售量的月增長率為x,
根據(jù)題意可得,,
解得,(舍去),
答:該品牌頭盔銷售量的月增長率為;
【小問2詳解】
解:①設(shè)該品牌頭盔的實(shí)際售價應(yīng)定為a元,
由題意得,
整理得,
解得,,
∵盡可能讓顧客得到實(shí)惠,
∴,
∴該品牌頭盔的實(shí)際售價應(yīng)定為50元.
②設(shè)該品牌頭盔每月獲得的利潤為y元,則
,
,拋物線開口向下,
∴當(dāng)時,y有最大值,最大值為12250.
∴該品牌頭盔每個的售價為65元.
故答案為:65
【點(diǎn)睛】本題考查了列一元二次方程解決增長率問題和利潤問題,以及根據(jù)二次函數(shù)的性質(zhì)求最大值問題.找出等量關(guān)系且熟練掌握解一元二次方程是解題的關(guān)鍵.
23. 【特例感知】
(1)如圖1,已知和是等邊三角形,直接寫出線段與的數(shù)量關(guān)系是______;
【類比遷移】
(2)如圖2,和都是等腰直角三角形,,請寫出線段與的數(shù)量關(guān)系,并說明理由.
【方法運(yùn)用】
(3)如圖3,若,點(diǎn)是線段外一動點(diǎn),,連接.若將線段繞點(diǎn)逆時針旋轉(zhuǎn)得到,連接,直接寫出線段的最大值為______.(提示:可在上方作,并使,連接)
【答案】(1);(2),理由見解析;(3)
【解析】
【分析】(1)由“”可證,可得;
(2)通過證明,可得,即可求解;
(3)通過證明,可得,則點(diǎn)的運(yùn)動軌跡是以為圓心,為半徑的圓,即可求解.
【詳解】解:(1)和是等邊三角形,
,,,
,
,
,
故答案為:;
(2),理由如下:
和是等腰直角三角形,
,,,
,,
,
,
;
(3)如圖,過點(diǎn)作,且,連接,,
,,
等腰直角三角形,
,,
將繞點(diǎn)逆時針旋轉(zhuǎn)得到,
,,
,,
,
,
又,
,
,
,
點(diǎn)的運(yùn)動軌跡是以為圓心,為半徑的圓,
當(dāng)在的延長線上時,的值最大,最大值為,
故答案為:.
【點(diǎn)睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),等腰三角形的性質(zhì)等知識點(diǎn),解答本題的關(guān)鍵是添加恰當(dāng)輔助線,構(gòu)造全等三角形或相似三角形解決問題,綜合性較強(qiáng),難度較大.黑
白
白
黑
(黑,黑)
(黑,白)
(黑,白)
白
(白,黑)
(白,白)
(白,白)
白
(白,黑)
(白,白)
(白,白)
相關(guān)試卷
這是一份河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年下學(xué)期九年級開學(xué)摸底考試數(shù)學(xué)試題(原卷版),共7頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年下學(xué)期九年級開學(xué)摸底考試數(shù)學(xué)試題(原卷版+解析版),文件包含河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年下學(xué)期九年級開學(xué)摸底考試數(shù)學(xué)試題原卷版docx、河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年下學(xué)期九年級開學(xué)摸底考試數(shù)學(xué)試題解析版docx等2份試卷配套教學(xué)資源,其中試卷共29頁, 歡迎下載使用。
這是一份河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年七年級下學(xué)期期中數(shù)學(xué)試題(原卷版+解析版),文件包含河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年七年級下學(xué)期期中數(shù)學(xué)試題原卷版docx、河南省南陽市鎮(zhèn)平縣2023-2024學(xué)年七年級下學(xué)期期中數(shù)學(xué)試題解析版docx等2份試卷配套教學(xué)資源,其中試卷共22頁, 歡迎下載使用。

相關(guān)試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實(shí),我們會補(bǔ)償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載