數(shù)學(xué)試卷
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,第I卷第1頁(yè)至第2頁(yè),第Ⅱ卷第3頁(yè)至第4頁(yè).考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.滿分150分,考試用時(shí)120分鐘.
第I卷(選擇題,共58分)
注意事項(xiàng):
1.答題前,考生務(wù)必用黑色碳素筆將自己的學(xué)校?班級(jí)?姓名?準(zhǔn)考證號(hào)?考場(chǎng)號(hào)?座位號(hào)在答題卡上填寫(xiě)清楚.
2.每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).在試題卷上作答無(wú)效.
一?單項(xiàng)選擇題(本大題共8小題,每個(gè)小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1. 函數(shù)定義域?yàn)椋? )
A. B. C. D.
2. 若,則( )
A B. C. D.
3. ,則( )
A. B. C. D.
4. 若關(guān)于的不等式的解集為,則的值是( )
A. B. C. 2D.
5. 已知中,內(nèi)角所對(duì)的邊分別為,且滿足,,則的面積為( )
A. B. C. D.
6. 向量,且∥,則實(shí)數(shù)( )
A. 5B. C. 2D.
7. 某校高一年級(jí)數(shù)學(xué)周練滿分100分,學(xué)生分?jǐn)?shù)均在內(nèi),將學(xué)生成績(jī)分成6組并作出頻率分布直方圖,但不小心污損了部分圖形
(如圖所示),則該次數(shù)學(xué)成績(jī)的中位數(shù)是( )
A. 60分B. 75分C. 79.5分D. 85分
8. 要得到的圖象,只需將函數(shù)的圖象( )
A. 向左平移個(gè)單位長(zhǎng)度B. 向右平移個(gè)單位長(zhǎng)度
C. 向左平移個(gè)單位長(zhǎng)度D. 向右平移個(gè)單位長(zhǎng)度
二?多項(xiàng)選擇題(本大題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)是符合題目要求的.全部選對(duì)的得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0分)
9 已知集合,則( )
A. B.
C. D.
10. 如圖,在直三棱柱中,點(diǎn)分別是棱的中點(diǎn),則下列結(jié)論中一定正確的是( )
A. 平面B. 平面
C. ∥平面D. ∥平面
11. 定義在上的奇函數(shù)滿足,則( )
A. B. 關(guān)于對(duì)稱
C. D. 周期函數(shù)
第II卷(非選擇題,共92分)
注意事項(xiàng):
第II卷用黑色碳素筆在答題卡上各題的答題區(qū)域內(nèi)作答,在試題卷上作答無(wú)效.
三?填空題(本大題共3小題,每小題5分,共15分)
12. 已知數(shù)據(jù)的平均數(shù)為5,則數(shù)據(jù)的平均數(shù)是__________.
13. 已知命題“,使得”是假命題,則實(shí)數(shù)的取值范圍是__________.
14. 蘇格蘭數(shù)學(xué)家納皮爾(J.Napier,1550-1617)在研究天文學(xué)的過(guò)程中,經(jīng)過(guò)對(duì)運(yùn)算體系的多年研究后發(fā)明的對(duì)數(shù),為當(dāng)時(shí)的天文學(xué)家處理“大數(shù)”的計(jì)算大大縮短了時(shí)間.即就是任何一個(gè)正實(shí)數(shù)可以表示成,則,這樣我們可以知道的位數(shù)為.已知正整數(shù),若是10位數(shù),則的值為_(kāi)_________.(參考數(shù)據(jù):)
四?解答題(共77分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)
15. 已知函數(shù)是定義域?yàn)榈钠婧瘮?shù),當(dāng)時(shí),.
(1)求;
(2)求的解析式.
16. 在中,內(nèi)角的對(duì)邊分別為,若,且.
(1)求角;
(2)若的面積為,求.
17. 在一次選拔比賽中,每個(gè)選手都需要進(jìn)行5輪考核,每輪設(shè)有一個(gè)問(wèn)題,能正確回答者進(jìn)入下一輪考核,否則被淘汰.已知某選手能正確回答第一、二、三、四、五輪問(wèn)題的概率分別為、、、、,且各輪問(wèn)題能否正確回答互不影響.
(1)求該選手進(jìn)入第二輪才被淘汰的概率;
(2)求該選手至多進(jìn)入第四輪考核的概率.
18. 如圖,邊長(zhǎng)為3正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將、分別沿、折起,使、兩點(diǎn)重合于點(diǎn),連接.
(1)求證:平面;
(2)求四棱錐的體積.
19. 類(lèi)比于二維空間(即平面),向量可用二元有序數(shù)組表示,若維空間向量用元有序數(shù)組表示,記為,,且維空間向量滿足.
(1)當(dāng),求.
(2)證明:;
(3)若是正實(shí)數(shù),且滿足,求證:.【考試時(shí)間:7月5日08:30-10:30】
玉溪市2023~2024學(xué)年春季學(xué)期期末高一年級(jí)教學(xué)質(zhì)量檢測(cè)
數(shù)學(xué)試卷
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,第I卷第1頁(yè)至第2頁(yè),第Ⅱ卷第3頁(yè)至第4頁(yè).考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.滿分150分,考試用時(shí)120分鐘.
第I卷(選擇題,共58分)
注意事項(xiàng):
1.答題前,考生務(wù)必用黑色碳素筆將自己的學(xué)校?班級(jí)?姓名?準(zhǔn)考證號(hào)?考場(chǎng)號(hào)?座位號(hào)在答題卡上填寫(xiě)清楚.
2.每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).在試題卷上作答無(wú)效.
一?單項(xiàng)選擇題(本大題共8小題,每個(gè)小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
1. 函數(shù)的定義域?yàn)椋? )
A. B. C. D.
【答案】C
【解析】
【分析】對(duì)數(shù)函數(shù)的真數(shù)大于0,然后解不等式得出答案.
【詳解】由題意知,,即,
所以或.
故選:C.
2. 若,則( )
A. B. C. D.
【答案】A
【解析】
【分析】根據(jù)同角三角函數(shù)的基本關(guān)系計(jì)算可得.
【詳解】因?yàn)椋裕?br>所以.
故選:A
3. ,則( )
A. B. C. D.
【答案】B
【解析】
【分析】根據(jù)復(fù)數(shù)代數(shù)形式的乘、除運(yùn)算法則計(jì)算可得.
【詳解】.
故選:B
4. 若關(guān)于的不等式的解集為,則的值是( )
A. B. C. 2D.
【答案】D
【解析】
【分析】根據(jù)不等式的解集得出相應(yīng)方程的根,再用韋達(dá)定理可求.
【詳解】不等式的解集為,
則方程的兩根為,
由韋達(dá)定理得:,,
可得,
故.
故選:.
5. 已知中,內(nèi)角所對(duì)的邊分別為,且滿足,,則的面積為( )
A. B. C. D.
【答案】A
【解析】
【分析】利用三角形面積公式即可求解.
【詳解】在中,,,,
由三角形的面積公式得.
故選:A.
6. 向量,且∥,則實(shí)數(shù)( )
A. 5B. C. 2D.
【答案】D
【解析】
【分析】根據(jù)向量的線性運(yùn)算可得,結(jié)合向量平行的坐標(biāo)運(yùn)算分析求解.
【詳解】因?yàn)椋瑒t,
若∥,則,解得.
故選:D.
7. 某校高一年級(jí)數(shù)學(xué)周練滿分100分,學(xué)生分?jǐn)?shù)均在內(nèi),將學(xué)生成績(jī)分成6組并作出頻率分布直方圖,但不小心污損了部分圖形
(如圖所示),則該次數(shù)學(xué)成績(jī)的中位數(shù)是( )
A. 60分B. 75分C. 79.5分D. 85分
【答案】B
【解析】
【分析】設(shè)該次數(shù)學(xué)成績(jī)的中位數(shù)為分,分析可知,結(jié)合中位數(shù)的定義列式求解.
【詳解】由題意可知:后三組的頻率依次為,
因?yàn)椋?br>設(shè)該次數(shù)學(xué)成績(jī)的中位數(shù)為分,則,
可得,解得,
所以該次數(shù)學(xué)成績(jī)的中位數(shù)為75分.
故選:B.
8. 要得到的圖象,只需將函數(shù)的圖象( )
A. 向左平移個(gè)單位長(zhǎng)度B. 向右平移個(gè)單位長(zhǎng)度
C. 向左平移個(gè)單位長(zhǎng)度D. 向右平移個(gè)單位長(zhǎng)度
【答案】C
【解析】
【分析】根據(jù)圖象的平移結(jié)合誘導(dǎo)公式分析判斷.
【詳解】對(duì)于選項(xiàng)A:可得,不合題意,故A錯(cuò)誤;
對(duì)于選項(xiàng)B:可得,不合題意,故B錯(cuò)誤;
對(duì)于選項(xiàng)C:可得,符合題意,故C正確;
對(duì)于選項(xiàng)D:可得,不合題意,故D錯(cuò)誤;
故選:C.
二?多項(xiàng)選擇題(本大題共3小題,每小題6分,共18分.在每小題給出的選項(xiàng)中,有多項(xiàng)是符合題目要求的.全部選對(duì)的得6分,部分選對(duì)的得部分分,有選錯(cuò)的得0分)
9. 已知集合,則( )
A. B.
C. D.
【答案】BD
【解析】
【分析】根據(jù)集合交集和并集運(yùn)算直接求解即可.
【詳解】因?yàn)椋?br>由題意可得:,,
故AC錯(cuò)誤,BD正確.
故選:BD.
10. 如圖,在直三棱柱中,點(diǎn)分別是棱的中點(diǎn),則下列結(jié)論中一定正確的是( )
A. 平面B. 平面
C. ∥平面D. ∥平面
【答案】AC
【解析】
【分析】對(duì)于A:根據(jù)直棱柱的定義即可得結(jié)果;對(duì)于B:假設(shè)成立,可得,結(jié)合題意分析判斷;對(duì)于C:根據(jù)線面平行的判定定理分析判斷;對(duì)于D:根據(jù)題意可得平面,即可得結(jié)果.
【詳解】對(duì)于選項(xiàng)A:因?yàn)槿庵鶠橹比庵?br>所以平面,故A正確;
對(duì)于選項(xiàng)B:若平面,且平面,則,
又因?yàn)辄c(diǎn)分別是棱的中點(diǎn),可知,
但題設(shè)條件不能確定,所以不能確定平面,故B錯(cuò)誤;
對(duì)于選項(xiàng)C:取的中點(diǎn),連接,
因?yàn)榉謩e為中點(diǎn),則∥,,
又因?yàn)闉槠叫兴倪呅?,且分別為的中點(diǎn),則∥,,
即∥,,可知為平行四邊形,則∥,
且平面,平面,
所以∥平面,故C正確;
對(duì)于選項(xiàng)D:因?yàn)榉謩e為的中點(diǎn),可知平面,故D錯(cuò)誤;
故選:AC.
11. 定義在上的奇函數(shù)滿足,則( )
A. B. 關(guān)于對(duì)稱
C. D. 是周期函數(shù)
【答案】ABD
【解析】
【分析】根據(jù)奇函數(shù)的性質(zhì)判斷A,根據(jù)判斷B,推導(dǎo)出即可判斷C,推導(dǎo)出即可判斷D.
【詳解】定義在上的奇函數(shù),則且,故A正確;
又,所以,則關(guān)于對(duì)稱,故B正確;
由及,可得,
所以,所以是為周期的周期函數(shù),故D正確;
又,故C錯(cuò)誤
故選:ABD
第II卷(非選擇題,共92分)
注意事項(xiàng):
第II卷用黑色碳素筆在答題卡上各題的答題區(qū)域內(nèi)作答,在試題卷上作答無(wú)效.
三?填空題(本大題共3小題,每小題5分,共15分)
12. 已知數(shù)據(jù)的平均數(shù)為5,則數(shù)據(jù)的平均數(shù)是__________.
【答案】13
【解析】
【分析】根據(jù)平均數(shù)相關(guān)知識(shí)進(jìn)行求解.
【詳解】因?yàn)閿?shù)據(jù)的平均數(shù)為5,
所以,
,
所以的平均數(shù)是13.
故答案為:13.
13. 已知命題“,使得”是假命題,則實(shí)數(shù)的取值范圍是__________.
【答案】
【解析】
【分析】通過(guò)構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù),求出函數(shù)的最小值,然后求解實(shí)數(shù)的取值范圍.
【詳解】因?yàn)槊}“,使得”是假命題,
所以命題“,使得”是真命題,
即對(duì),恒成立,
令,則,
所以,
所以.
故答案為:.
14. 蘇格蘭數(shù)學(xué)家納皮爾(J.Napier,1550-1617)在研究天文學(xué)的過(guò)程中,經(jīng)過(guò)對(duì)運(yùn)算體系的多年研究后發(fā)明的對(duì)數(shù),為當(dāng)時(shí)的天文學(xué)家處理“大數(shù)”的計(jì)算大大縮短了時(shí)間.即就是任何一個(gè)正實(shí)數(shù)可以表示成,則,這樣我們可以知道的位數(shù)為.已知正整數(shù),若是10位數(shù),則的值為_(kāi)_________.(參考數(shù)據(jù):)
【答案】或
【解析】
【分析】依題意可得,兩邊取常用對(duì)數(shù),即可得到,從而得解.
【詳解】依題意可得,兩邊取常用對(duì)數(shù)可得,
即,所以,即,
又正整數(shù),所以或.
故答案為:或
四?解答題(共77分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)
15. 已知函數(shù)是定義域?yàn)榈钠婧瘮?shù),當(dāng)時(shí),.
(1)求;
(2)求的解析式.
【答案】(1)
(2)
【解析】
【分析】(1)根據(jù)奇函數(shù)的定義可得當(dāng)時(shí),的解析式,即可得結(jié)果;
(2)根據(jù)題意結(jié)合(1)中結(jié)論,即可得結(jié)果.
【小問(wèn)1詳解】
因?yàn)楹瘮?shù)是定義域?yàn)榈钠婧瘮?shù),
當(dāng)時(shí),則,可得,
所以.
【小問(wèn)2詳解】
由(1)可得:
16. 在中,內(nèi)角的對(duì)邊分別為,若,且.
(1)求角;
(2)若的面積為,求.
【答案】(1)
(2)
【解析】
【分析】(1)依題意可得,,利用余弦定理計(jì)算可得;
(2)由面積公式求出,結(jié)合計(jì)算可得.
【小問(wèn)1詳解】
因?yàn)?,所以,又,則,
又余弦定理,
又,所以.
【小問(wèn)2詳解】
由,所以,
則.
17. 在一次選拔比賽中,每個(gè)選手都需要進(jìn)行5輪考核,每輪設(shè)有一個(gè)問(wèn)題,能正確回答者進(jìn)入下一輪考核,否則被淘汰.已知某選手能正確回答第一、二、三、四、五輪問(wèn)題的概率分別為、、、、,且各輪問(wèn)題能否正確回答互不影響.
(1)求該選手進(jìn)入第二輪才被淘汰的概率;
(2)求該選手至多進(jìn)入第四輪考核的概率.
【答案】(1)
(2)
【解析】
【分析】(1)設(shè)該選手進(jìn)入第二輪被淘汰為事件,根據(jù)相互獨(dú)立事件的概率公式計(jì)算可得;
(2)設(shè)該選手至多進(jìn)入第四輪考核為事件,根據(jù)互斥事件及相互獨(dú)立事件的概率公式計(jì)算可得.
【小問(wèn)1詳解】
設(shè)該選手進(jìn)入第二輪被淘汰事件,則;
【小問(wèn)2詳解】
設(shè)該選手至多進(jìn)入第四輪考核為事件,
則.
18. 如圖,邊長(zhǎng)為3的正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將、分別沿、折起,使、兩點(diǎn)重合于點(diǎn),連接.
(1)求證:平面;
(2)求四棱錐的體積.
【答案】(1)證明見(jiàn)解析
(2)
【解析】
【分析】(1)依題意,,即可證明;
(2)首先求出的面積,在立體圖形中連接與交于點(diǎn),即可得到,從而得到點(diǎn)到平面的距離為點(diǎn)到平面的距離的,再由計(jì)算可得.
【小問(wèn)1詳解】
在正方形中,,,
則在立體圖形中有,,
又,平面,
所以平面.
【小問(wèn)2詳解】
因?yàn)槠矫?,所以為三棱錐的高,且,
在平面圖形中可得,,
所以,則,所以,
則,
在平面圖形中連接與交于點(diǎn),設(shè),則為的中點(diǎn),
又為的中點(diǎn),為的中點(diǎn),所以為的中點(diǎn),所以,
在立體圖形中連接與交于點(diǎn),則,所以點(diǎn)到平面的距離為點(diǎn)到平面的距離的,
所以.
19. 類(lèi)比于二維空間(即平面),向量可用二元有序數(shù)組表示,若維空間向量用元有序數(shù)組表示,記為,,且維空間向量滿足.
(1)當(dāng),求.
(2)證明:;
(3)若是正實(shí)數(shù),且滿足,求證:.
【答案】(1)
(2)證明見(jiàn)詳解 (3)證明見(jiàn)詳解
【解析】
【分析】(1)根據(jù)題意可得,結(jié)合夾角公式運(yùn)算求解;
(2)根據(jù)題意結(jié)合數(shù)量積的定義分析證明;
(3)根據(jù)題意結(jié)合基本不等式分析證明.
【小問(wèn)1詳解】
因?yàn)?,則,
所以.
【小問(wèn)2詳解】
因?yàn)椋?br>則,
且,可得,當(dāng)且僅當(dāng)共線時(shí),等號(hào)成立,
所以.
【小問(wèn)3詳解】
因?yàn)槭钦龑?shí)數(shù),則,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,
即,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,
同理可得:,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,
,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,
可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,
此時(shí)滿足,即等號(hào)成立,
所以.
【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:對(duì)于(2),利用數(shù)量積將代數(shù)問(wèn)題轉(zhuǎn)化為向量問(wèn)題,進(jìn)而分析證明.

相關(guān)試卷

云南省玉溪市2023-2024學(xué)年高一下學(xué)期7月期末考試數(shù)學(xué)試卷(Word版附解析):

這是一份云南省玉溪市2023-2024學(xué)年高一下學(xué)期7月期末考試數(shù)學(xué)試卷(Word版附解析),共17頁(yè)。試卷主要包含了 ,則, 向量,且∥,則實(shí)數(shù),5分D等內(nèi)容,歡迎下載使用。

2024惠州高一下學(xué)期期末考試數(shù)學(xué)含解析:

這是一份2024惠州高一下學(xué)期期末考試數(shù)學(xué)含解析,共26頁(yè)。試卷主要包含了 設(shè)z為復(fù)數(shù)等內(nèi)容,歡迎下載使用。

2024南平高一下學(xué)期期末考試數(shù)學(xué)含解析:

這是一份2024南平高一下學(xué)期期末考試數(shù)學(xué)含解析,共23頁(yè)。試卷主要包含了下表是抽取的女生樣本的數(shù)據(jù)等內(nèi)容,歡迎下載使用。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

2024滁州高一下學(xué)期期末考試數(shù)學(xué)含解析

2024滁州高一下學(xué)期期末考試數(shù)學(xué)含解析

2024曲靖高一下學(xué)期期末考試數(shù)學(xué)含解析

2024曲靖高一下學(xué)期期末考試數(shù)學(xué)含解析

2023玉溪一中高一下學(xué)期第一次月考數(shù)學(xué)試題含解析

2023玉溪一中高一下學(xué)期第一次月考數(shù)學(xué)試題含解析

2023玉溪高二上學(xué)期期末考試數(shù)學(xué)含解析

2023玉溪高二上學(xué)期期末考試數(shù)學(xué)含解析

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期末專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部