1. (2023·安徽)在中,,分別過點B,C作平分線的垂線,垂足分別為點D,E,BC的中點是M,連接CD,MD,ME.則下列結(jié)論錯誤的是( )
A.B.C.D.
2.(安徽省2020年中考數(shù)學試題)如圖和都是邊長為的等邊三角形,它們的邊在同一條直線上,點,重合,現(xiàn)將沿著直線向右移動,直至點與重合時停止移動.在此過程中,設(shè)點移動的距離為,兩個三角形重疊部分的面積為,則隨變化的函數(shù)圖像大致為( )
A. B.
C. D.
3.(安徽省2019年中考數(shù)學試題)如圖,在正方形ABCD中,點E,F(xiàn)將對角線AC三等分,且AC=12,點P在正方形的邊上,則滿足PE+PF=9的點P的個數(shù)是( )
A.0B.4C.6D.8
4.(安徽省2018年中考數(shù)學試題)如圖,直線都與直線l垂直,垂足分別為M,N,MN=1,正方形ABCD的邊長為,對角線AC在直線l上,且點C位于點M處,將正方形ABCD沿l向右平移,直到點A與點N重合為止,記點C平移的距離為x,正方形ABCD的邊位于之間部分的長度和為y,則y關(guān)于x的函數(shù)圖象大致為( )
A.B.C.D.
5.(2017·安徽)如圖,在矩形中,,.動點滿足.則點到,兩點距離之和的最小值為( )
A.B.C.D.
1. (2023·福建師范大學附屬中學初中部八年級期中)如圖,在中,,邊的垂直平分線分別交,于點,,點是邊的中點,點是上任意一點,連接,,若,,周長最小時,,之間的關(guān)系是( )
A.B.C.D.
2. (2023·浙江金華·九年級期末)己知兩個等腰直角三角形的斜邊放置在同一直線l上,且點C與點B重合,如圖①所示.△ABC固定不動,將△A′B′C′在直線l上自左向右平移.直到點B′移動到與點C重合時停止.設(shè)△A′B′C′移動的距離為x,兩個三角形重疊部分的面積為y,y與x之間的函數(shù)關(guān)系如圖②所示,則△ABC的直角邊長是( )
A.4B.4C.3D.3
3. (2023·河南鄭州·一模)如圖,在平面直角坐標系中,四邊形ABCD為正方形,點A的坐標為,點B的坐標為,點E為對角線的交點,點F與點E關(guān)于y軸對稱,則點F的坐標為( )
A.B.C.D.
4. (2023·河南鄭州·九年級期末)如圖①,在正方形ABCD中,點E在AD邊上,連接BE,以BE為邊作等邊△BEF,點F在BC的延長線上,動點M從點B出發(fā),沿B→E→F向點F做勻速運動,過點M作MP⊥AD于點P.設(shè)點M運動的距離為x,△PEM的面積為y, y與x的函數(shù)關(guān)系圖象如圖②所示,則DE的長為( )
A.3﹣B.3+C.2﹣D.2+
1. (2023·廣西賀州·九年級期末)如圖,正方形ABCD的邊長為4cm,動點P,Q同時從點A處出發(fā),以2cm/s小的速度分別沿和的路徑向點C運動.設(shè)運動時間為x(單位:s),以P、B、D、Q為頂點的圖形面積的為y(單位:),則下列圖像中可表示y與x(且)之間的函數(shù)關(guān)系的是( )
B.
C.D.
2.(重慶市西南大學附屬中學2021-2022學年九年級下學期數(shù)學入學考試試題)如圖,在矩形中,、分別是邊、上的點,,連接、,與對角線交于點,且,,,則的長為( )
A.B.C.4D.6
3. (2023·重慶南開中學八年級開學考試)如圖所示,在長方形ABCD中,AB=2,在線段BC上取一點E,連接AE、ED,將ABE沿AE翻折,點B落在點處,線段E交AD于點F.將ECD沿DE翻折,點C的對應恰好落在線段上,且點為的中點,則線段EF的長為( )
A.3B.C.4D.
4. (2023·全國·九年級專題練習)如圖,將拋物線yx2+x+3位于x軸下方的圖象沿x軸翻折,x軸上方的直線AD∥x軸,且與翻折后的圖象交于A、B、C、D四點,若AB=BC=CD,則BC的長度是( )
A.B.C.D.
5. (2023·福建·大同中學二模)如圖,直線y=x+6分別與x軸、y軸相交于點M,N,∠MPN=90°,點C(0,3),則PC長度的最小值是( )
A.33B.3﹣2C.D.3
2024年中考數(shù)學沖刺 挑戰(zhàn)壓軸題專題匯編(安徽考卷)
01挑戰(zhàn)壓軸題(選擇題)
1. (2023·安徽)在中,,分別過點B,C作平分線的垂線,垂足分別為點D,E,BC的中點是M,連接CD,MD,ME.則下列結(jié)論錯誤的是( )
A.B.C.D.
【答案】A
【解析】
【分析】
設(shè)AD、BC交于點H,作于點F,連接EF.延長AC與BD并交于點G.由題意易證,從而證明ME為中位線,即,故判斷B正確;又易證,從而證明D為BG中點.即利用直角三角形斜邊中線等于斜邊一半即可求出,故判斷C正確;由、和可證明.再由、和可推出 ,即推出,即,故判斷D正確;假設(shè),可推出,即可推出.由于無法確定的大小,故不一定成立,故可判斷A錯誤.
【詳解】
如圖,設(shè)AD、BC交于點H,作于點F,連接EF.延長AC與BD并交于點G.
∵AD是的平分線,,,
∴HC=HF,
∴AF=AC.
∴在和中,,
∴,
∴,∠AEC=∠AEF=90°,
∴C、E、F三點共線,
∴點E為CF中點.
∵M為BC中點,
∴ME為中位線,
∴,故B正確,不符合題意;
∵在和中,,
∴,
∴,即D為BG中點.
∵在中,,
∴,
∴,故C正確,不符合題意;
∵,,,
∴.
∵,,
∴,
∴.
∵AD是的平分線,
∴.
∵,
∴,
∴,
∴,故D正確,不符合題意;
∵假設(shè),
∴,
∴在中,.
∵無法確定的大小,故原假設(shè)不一定成立,故A錯誤,符合題意.
故選A.
【點睛】
本題考查角平分線的性質(zhì),三角形全等的判定和性質(zhì),直角三角形的性質(zhì),三角形中位線的判定和性質(zhì)以及含角的直角三角形的性質(zhì)等知識,較難.正確的作出輔助線是解答本題的關(guān)鍵.
2.(安徽省2020年中考數(shù)學試題)如圖和都是邊長為的等邊三角形,它們的邊在同一條直線上,點,重合,現(xiàn)將沿著直線向右移動,直至點與重合時停止移動.在此過程中,設(shè)點移動的距離為,兩個三角形重疊部分的面積為,則隨變化的函數(shù)圖像大致為( )
A. B.
C. D.
【答案】A
【分析】
根據(jù)圖象可得出重疊部分三角形的邊長為x,根據(jù)特殊角三角函數(shù)可得高為,由此得出面積y是x的二次函數(shù),直到重合面積固定,再往右移動重疊部分的邊長變?yōu)?4-x),同時可得
【詳解】
C點移動到F點,重疊部分三角形的邊長為x,由于是等邊三角形,則高為,面積為y=x··=,
B點移動到F點,重疊部分三角形的邊長為(4-x),高為,面積為
y=(4-x)··=,
兩個三角形重合時面積正好為.
由二次函數(shù)圖象的性質(zhì)可判斷答案為A,
故選A.
【點睛】
本題考查三角形運動面積和二次函數(shù)圖像性質(zhì),關(guān)鍵在于通過三角形面積公式結(jié)合二次函數(shù)圖形得出結(jié)論.
3.(安徽省2019年中考數(shù)學試題)如圖,在正方形ABCD中,點E,F(xiàn)將對角線AC三等分,且AC=12,點P在正方形的邊上,則滿足PE+PF=9的點P的個數(shù)是( )
A.0B.4C.6D.8
【答案】D
【分析】
P點是正方形的邊上的動點,我們可以先求PE+PF的最小值,然后根據(jù)PE+PF=9判斷得出其中一邊上P點的個數(shù),即可解決問題.
【詳解】
解:如圖,作點F關(guān)于BC的對稱點M,連接FM交BC于點N,連接EM,交BC于點H
∵點E,F(xiàn)將對角線AC三等分,且AC=12,
∴EC=8,F(xiàn)C=4=AE,
∵點M與點F關(guān)于BC對稱
∴CF=CM=4,∠ACB=∠BCM=45°
∴∠ACM=90°
∴EM=
則在線段BC存在點H到點E和點F的距離之和最小為4<9
在點H右側(cè),當點P與點C重合時,則PE+PF=12
∴點P在CH上時,4<PE+PF≤12
在點H左側(cè),當點P與點B重合時,BF=
∵AB=BC,CF=AE,∠BAE=∠BCF
∴△ABE≌△CBF(SAS)
∴BE=BF=2
∴PE+PF=4
∴點P在BH上時,4<PE+PF<4
∴在線段BC上點H的左右兩邊各有一個點P使PE+PF=9,
同理在線段AB,AD,CD上都存在兩個點使PE+PF=9.
即共有8個點P滿足PE+PF=9,
故選D.
【點睛】
本題主要考查了正方形的性質(zhì)以及根據(jù)軸對稱求最短路徑,有一定難度,巧妙的運用求最值的思想判斷滿足題意的點的個數(shù)是解題關(guān)鍵.
4.(安徽省2018年中考數(shù)學試題)如圖,直線都與直線l垂直,垂足分別為M,N,MN=1,正方形ABCD的邊長為,對角線AC在直線l上,且點C位于點M處,將正方形ABCD沿l向右平移,直到點A與點N重合為止,記點C平移的距離為x,正方形ABCD的邊位于之間部分的長度和為y,則y關(guān)于x的函數(shù)圖象大致為( )
A.B.C.D.
【答案】A
【分析】
由已知易得AC=2,∠ACD=45°,分0≤x≤1、1

相關(guān)試卷

2024年中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽卷)02挑戰(zhàn)壓軸題(填空題)(原卷版+解析):

這是一份2024年中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽卷)02挑戰(zhàn)壓軸題(填空題)(原卷版+解析),共29頁。

2024年中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(江西專用)01挑戰(zhàn)壓軸題(選擇題)(原卷版+解析):

這是一份2024年中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(江西專用)01挑戰(zhàn)壓軸題(選擇題)(原卷版+解析),共29頁。

2024年中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽卷)05挑戰(zhàn)壓軸題(解答題三)(原卷版+解析):

這是一份2024年中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽卷)05挑戰(zhàn)壓軸題(解答題三)(原卷版+解析),共51頁。試卷主要包含了如圖1,已知正方形,點為邊的中點.等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

04挑戰(zhàn)壓軸題(解答題二)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

04挑戰(zhàn)壓軸題(解答題二)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

03挑戰(zhàn)壓軸題(解答題一)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

03挑戰(zhàn)壓軸題(解答題一)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

02挑戰(zhàn)壓軸題(填空題)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

02挑戰(zhàn)壓軸題(填空題)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

01挑戰(zhàn)壓軸題(選擇題)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

01挑戰(zhàn)壓軸題(選擇題)-中考數(shù)學沖刺挑戰(zhàn)壓軸題專題匯編(安徽專用)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部