
參考公式:拋物線的頂點坐標(biāo)為,對稱軸為 .
一、選擇題:(本大題12個小題,每小題4分,共48分)下面每個小題的選項中只有一個選項是正確的,請將答題卡上題號右側(cè)正確答案所對應(yīng)的方框涂黑.
1.下列各數(shù)中最大的數(shù)是( )
A. B. C.0D.1
2.計算的結(jié)果是( )
A.B.C.D.
3.不等式組的解集在數(shù)軸上可表示為( )
A.B.
C.D.
4.如圖,圖形甲與圖形乙是位似圖形,O是位似中心,位似比為,點A,B的對應(yīng)點,
分別為點A′,B′.若AB=6,則的長為( )
A.6B.8C.9D.10
5.如圖,已知AB是的直徑,弦CD⊥AB,垂足為E,且∠ACD=22.5°,CD=4,則的半徑長為( )
第4題圖
第5題圖
第8題圖2
第8題圖1
A.B.C.D.
6.估計的值應(yīng)在( )
A.3和4之間B.4和5之間C.5和6之間D.6和7之間
7.下列命題是真命題的是( )
A.每個內(nèi)角都相等的多邊形是正多邊形. B.對角線相等的平行四邊形是矩形.
C.兩直線平行,同位角互補. D.過線段中點的直線是線段的垂直平分線.
8.我國很早就開始對數(shù)學(xué)的研究,其中不少成果被收入古代數(shù)學(xué)著作《九章算術(shù)》中,《九章算術(shù)》的“方程”一章中,有許多關(guān)于一次方程組的內(nèi)容,這一章的第一個問題譯成現(xiàn)代漢語是這樣的: “上等谷3束,中等谷2束,下等谷1束,可得糧食39斗;上等谷2束,中等谷3束,下等谷1束,可得糧食34斗;上等谷1束,中等谷2束,下等谷3束,可得糧食26斗.問上、中、下三等谷每束各可得糧食幾斗?”如圖1的算籌代表了古代解決這個問題的方法,設(shè)每束上等谷、中等谷、下等谷各可得糧食x斗、y斗、z斗,則可列方程組為:類似地,圖2所示的算籌我們可以表示為( )
A.B.C.D.
第8題 圖2
第8題 圖1
9.小明和爸爸從家里出發(fā),沿同一路線到圖書館,小明勻速跑步先出發(fā),2分鐘后,爸爸騎自行車出發(fā),勻速騎行一段時間后,在途中商店買水花費了5分鐘,從商店出來后,爸爸的騎車速度比他之前的騎車速度增加60米/分鐘,結(jié)果與小明同時到達(dá)圖書館.小明和爸爸兩人離開家的路程s(米)與小明出發(fā)的時間t(分鐘)之間的函數(shù)圖像如圖所示,則下列說法錯誤的是( )
A.a=17.B.小明的速度是150米/分鐘.
C.爸爸從家到商店的速度是200米/分鐘.D.t=9時,爸爸追上小明.
10.如圖,在正方形ABCD中,將邊BC繞點B逆時針旋轉(zhuǎn)至點BC′,若∠CC′D=90°,CC′=2,則線段BC′的長度為( )
第15題圖
第10題圖
第9題圖
A.2B.C.D.
11.已知的不等式組有且只有4個整數(shù)解,并且使得關(guān)于y的分式方程的解為整數(shù),則滿足條件的所有整數(shù)m的個數(shù)有( )
A.1個B.2個C.3個D.4個
12.定義:如果代數(shù)式(是常數(shù))與(是常數(shù)),滿足,,,則稱這兩個代數(shù)式A與B互為“同心式”,下列四個結(jié)論:
(1)代數(shù)式:的“同心式”為;
(2)若與互為“同心式”,則的值為1;
(3)當(dāng)時,無論x取何值,“同心式”與的值始終互為相反數(shù).
(4)若A、B互為“同心式”,有兩個相等的實數(shù)根,則.
其中,正確的結(jié)論有( )個
A.1個B.2個C.3個D.4個
二、填空題:(本大題4個小題,每小題4分,共16分)請將每小題的答案直接填在答題卷中對應(yīng)的橫線上.
13.計算:= .
14.現(xiàn)有4張正面分別標(biāo)有數(shù)字的不透明卡片,它們除了數(shù)字外其余完全相同,將它們背面朝上洗均勻,隨機抽取一張,將該卡片上的數(shù)字記為m,放回后再洗勻并隨機抽取一張,將該卡片上的數(shù)字記為n,則滿足方程mx+n=0的解是負(fù)數(shù)的概率為 .
15.如圖,矩形ABCD的兩條對角線相交于點O,.以點A為圓心,AD長為半徑畫弧,此弧恰好經(jīng)過點O,并與AB交于點E,則圖中陰影部分的面積為 .
16.疫情隔離期間,為了降低外出感染風(fēng)險,各大商場開通了送貨到小區(qū)的便民服務(wù),某商場推出適合大多數(shù)家庭需要的A、B、C三種蔬菜搭配裝袋供市民直接選擇.其中,甲種搭配每袋裝有3千克A,1千克B,1千克C;乙種搭配每袋裝有1千克A,2千克B,2千克C.甲、乙兩種袋裝蔬菜每袋成本價分別為袋中A、B、C三種蔬菜的成本價之和.已知A種蔬菜每千克成本價為2.4元,甲種搭配每袋售價為26元,利潤率為30%,乙種搭配的利潤率為20%.若這兩種袋裝蔬菜的銷售利潤率達(dá)到21%,則該商場銷售甲、乙兩種袋裝蔬菜的數(shù)量之整數(shù)比是 .()
三、解答題:(本大題2個小題,每小題8分,共16分)解答時每小題必須給出必要的演算過程或推理步驟,請將解答書寫在答題卷中對應(yīng)的位置上.
17.計算:
18. 如圖,在平行四邊形ABCD中,.
(1)用尺規(guī)完成以下基本作圖:作∠BAD的平分線交 BC于點E,在DA上截取DF,使(保留作圖痕跡,不寫作法);
(2)在(1)所作的圖形中,連接EF,求證:四邊形ABEF是菱形.請補全下面的證明過程.
證明:∵四邊形ABCD為平行四邊形,
∴且,
第18題圖
∵,
∴,
∴ ① .
∴四邊形ABEF是平行四邊形,
∵,
∴ ② .
∵AE平分∠BAF,
∴ ③ ,
∴.
∴ ④ ,
∴四邊形ABEF是菱形.
四、解答題:(本大題7個小題,每小題10分,共70分)解答時每小題必須給出必要的演算過程或推理步驟,請將解答書寫在答題卡(卷)中對應(yīng)的位置上.
19. 某省為了舉辦一場大型活動,特向大學(xué)召集志愿者.在志愿者招募之時,甲、乙兩所大學(xué)就積極組織了志愿者選拔活動,對報名的志愿者進(jìn)行現(xiàn)場測試,現(xiàn)從兩所大學(xué)參加測試的志愿者中分別隨機抽取了20名志愿者的測試成績進(jìn)行整理和分析(成績得分用x表示,滿分100分,共分成五組:A.,B.,C.,D.,E.),下面給出了部分信息:
信息1:甲校20名志愿者的成績在D組的數(shù)據(jù)是:90,91,91,92.
信息2:乙校20名志愿者的成績成績是:82,89,80,85,88,89,87,96,96, 99,96,92,91,93,96,97,98,92,94,100.
信息4:兩校抽取的志愿者成績的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:
信息3:
根據(jù)以上信息,解答下列問題:
(1)由上表填空:a=___,b=___,= ___°.
(2)你認(rèn)為哪個學(xué)校的志愿者測試成績較好,請說明理由(寫出一條即可).
(3)若甲校有200名志愿者,乙校有300名志愿者參加了此次側(cè)試,估計此次參加測試的志愿者中,成績在90分以上的志愿者有多少?
如圖1是2022年北京冬奧會首鋼滑雪大跳臺,曲線的設(shè)計靈感來自敦煌“飛天”飄帶,又名“雪飛天”,它是世界上首例永久性保留和使用的滑雪大跳臺場館.如圖2,為測量“雪飛天”的高度,測得大跳臺跨度AB為140m,出發(fā)區(qū)CD為20m,且,AD為大跳臺鋼支架,在點A處測得點D的仰角∠DAB=75°,在點C處測得點B的俯角∠ECB=30°.(測角儀的高度忽略不計)
(1)求大跳臺出發(fā)區(qū)CD距離地面AB的高度.(結(jié)果精確到1m;參考數(shù)據(jù): ,,,)
(2)據(jù)了解,“雪飛天”需要造雪,分別用雪槍和雪炮來滿足對于雪量和雪質(zhì)的不同要求,雪炮出雪量大,適合室外滑雪場快速鋪雪,雪槍造雪分布比較平均,相對造雪量比較小.若每臺雪槍每小時出雪量比雪炮少,且一臺雪槍出雪所用的時間與一臺雪炮出雪所用的時間相等.求每臺雪槍和雪炮每小時的出雪量.
21.如圖,一次函數(shù)與反比例函數(shù)交于點,點C與點A關(guān)于原點對稱.
(1)求一次函數(shù)和反比例函數(shù)的解析式,并在平面直角坐
標(biāo)系中畫出這兩個函數(shù)的圖象;
(2)求的面積;
(3)直接寫出不等式的解集.
22.五一期間,璧山區(qū)丁家街道天天農(nóng)家樂的草莓和枇杷相繼成熟,為了吸引更多游客走進(jìn)鄉(xiāng)村,體驗采摘樂趣,天天農(nóng)家樂推出采摘草莓和采摘枇杷兩種方式:采摘1公斤草莓的費用比采摘1公斤枇杷的費用多15元,采摘2公斤草莓和1公斤枇杷的費用共90元。
(1)求采摘1公斤草莓和1公斤枇杷的費用分別是多少元?
(2)根據(jù)去年采摘情況表明,平均每天采摘草莓30公斤,采摘枇杷20公斤.天天農(nóng)家樂決定今年采摘枇杷的價格保持不變,采摘草莓的價格下調(diào),采摘草莓的費用每降價3元,采摘草莓的數(shù)量會增加2公斤.天天農(nóng)家樂要想平均每天的收益為1386元,請問采摘草莓每公斤應(yīng)降價多少元?
23.已知一個四位自然數(shù)N,它的各個數(shù)位上的數(shù)字均不為0,且滿足千位數(shù)字與百位數(shù)字的和等于十位數(shù)字與個位數(shù)字的和,則稱這個數(shù)為“和對稱數(shù)”,將這個四位自然數(shù)N的千位數(shù)字和百位數(shù)字互換,十位數(shù)字和個位數(shù)字互換,得到,規(guī)定.
例如:N=4536, ∵4+5=3+6,∴4536是“和對稱數(shù)”, .
N =2346, ∵, ∴2346不是“和對稱數(shù)”.
(1)請判斷2451、3972是不是“和對稱數(shù)”,并說明理由.若是,請求出對應(yīng)的F(N)的值.
(2)已知A,B均為“和對稱數(shù)”,其中, (其,且均為整數(shù)),令,當(dāng)k能被77整除時,求出所有符合條件的A的值.
24.如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸交于點,與y軸交于點.
(1)求拋物線的解析式;
(2)如圖1,連接AC,點D為線段AC下方拋物線上一動點,過點D作DE∥y軸交線段AC于E點,連接EO,記△ADC的面積為S1,△AEO的面積為S2,求S1﹣S2的最大值及此時點D的坐標(biāo);
(3)如圖2,在(2)問的條件下,將拋物線沿射線CB方向平移個單位長度得到新拋物線,動點M在原拋物線的對稱軸上,點N為新拋物線上一點,直接寫出所有使得以點A、D、M、N為頂點的四邊形是平行四邊形的點N的坐標(biāo),并把求其中一個點N的坐標(biāo)的過程寫出來.
25.在ΔABC中,AB = AC,∠ABC=30°,點D是邊AB上的一動點,點F是邊CD上的動點,連接AF并延長至點E,交BC于G,連接BE,∠AFC=60°,且∠E+∠BDF=180°,
(1)如圖1,若,,求的長;
(2)如圖2,若D是AB的中點,連接DE、BF,求證:;
圖1
圖2
圖3
(3)如圖3,在(2)問的條件下,將ΔBDE繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)中的三角形記為,取的中點為M,連接CM.當(dāng)CM取最大時,將ΔADF沿直線CM翻折,得到,直接寫出的值.
圖1
圖3
圖3
學(xué)校
平均數(shù)
中位數(shù)
眾數(shù)
方差
甲
92
a
95
36.6
乙
92
92.5
b
31.4
這是一份重慶市璧山區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題(含答案),共22頁。試卷主要包含了單選題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份重慶市璧山區(qū)2023-2024學(xué)年九上數(shù)學(xué)期末調(diào)研試題含答案,共7頁。試卷主要包含了考生要認(rèn)真填寫考場號和座位序號,若,則等內(nèi)容,歡迎下載使用。
這是一份2023屆重慶市璧山區(qū)中考數(shù)學(xué)階段性適應(yīng)模擬試題(一模)含解析,共13頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
注冊成功