
考試要求 1.了解坐標(biāo)系的作用,了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.2.了解極坐標(biāo)的基本概念,會(huì)在極坐標(biāo)系中用極坐標(biāo)刻畫(huà)點(diǎn)的位置,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.3.能在極坐標(biāo)系中給出簡(jiǎn)單圖形表示的極坐標(biāo)方程.
知識(shí)梳理
1.伸縮變換
設(shè)點(diǎn)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換φ:____________________________的作用下,點(diǎn)P(x,y)對(duì)應(yīng)到點(diǎn)P′(x′,y′),稱(chēng)φ為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱(chēng)伸縮變換.
2.極坐標(biāo)系
(1)極坐標(biāo)與極坐標(biāo)系的概念
在平面內(nèi)取一個(gè)定點(diǎn)O,叫做極點(diǎn),自極點(diǎn)O引一條射線(xiàn)Ox,叫做極軸,再選定一個(gè)長(zhǎng)度單位、一個(gè)角度單位(通常取弧度)及其正方向(通常取逆時(shí)針?lè)较?,這樣就建立了一個(gè)極坐標(biāo)系.平面內(nèi)任一點(diǎn)M的位置可以由線(xiàn)段OM的長(zhǎng)度ρ和以射線(xiàn)Ox為始邊,射線(xiàn)OM為終邊的角θ來(lái)刻畫(huà)(如圖所示).這兩個(gè)數(shù)組成的有序數(shù)對(duì)(ρ,θ)稱(chēng)為點(diǎn)M的極坐標(biāo),記為M(ρ,θ).ρ稱(chēng)為點(diǎn)M的________,θ稱(chēng)為點(diǎn)M的________.一般認(rèn)為ρ≥0.當(dāng)極角θ的取值范圍是[0,2π)時(shí),平面上的點(diǎn)(除去極點(diǎn))就與極坐標(biāo)(ρ,θ)(ρ≠0)建立一一對(duì)應(yīng)的關(guān)系.特別地,極點(diǎn)O的坐標(biāo)為(0,θ)(θ∈R).
(2)極坐標(biāo)與直角坐標(biāo)的互化
設(shè)M為平面內(nèi)任意一點(diǎn),它的直角坐標(biāo)為(x,y),極坐標(biāo)為(ρ,θ).由圖可知下面關(guān)系式成立:
________________或____________________這就是極坐標(biāo)與直角坐標(biāo)的互化公式.
3.常見(jiàn)曲線(xiàn)的極坐標(biāo)方程
思考辨析
判斷下列結(jié)論是否正確(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)
(1)若點(diǎn)P的直角坐標(biāo)為(1,-eq \r(3)),則點(diǎn)P的一個(gè)極坐標(biāo)是eq \b\lc\(\rc\)(\a\vs4\al\c1(2,-\f(π,3))).( )
(2)在極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程不是唯一的.( )
(3)極坐標(biāo)方程θ=π(ρ≥0)表示的曲線(xiàn)是一條直線(xiàn).( )
(4)tan θ=1與θ=eq \f(π,4)表示同一條曲線(xiàn).( )
教材改編題
1.點(diǎn)M的極坐標(biāo)為eq \b\lc\(\rc\)(\a\vs4\al\c1(6,\f(5π,6))),則點(diǎn)M的直角坐標(biāo)為( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(-3,3\r(3))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-3\r(3),3))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(3\r(3),-3)) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(3,3\r(3)))
2.在極坐標(biāo)系中,點(diǎn)eq \b\lc\(\rc\)(\a\vs4\al\c1(3,\f(π,6)))到直線(xiàn)ρsineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,3)))=1的距離為( )
A.2 B.1 C.3 D.eq \r(3)-1
3.將直角坐標(biāo)方程(x-3)2+y2=9化為極坐標(biāo)方程為_(kāi)___________.
題型一 極坐標(biāo)與直角坐標(biāo)的互化
例1 (1)已知點(diǎn)M的極坐標(biāo)為eq \b\lc\(\rc\)(\a\vs4\al\c1(4,\f(π,3))),則點(diǎn)M的直角坐標(biāo)為( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,2\r(3))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-2,2\r(3)))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(2\r(3),2)) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(2\r(3),-2))
聽(tīng)課記錄:_______________________________________________________________________
________________________________________________________________________________
(2)點(diǎn)M的直角坐標(biāo)是(-1,eq \r(3)),則點(diǎn)M的極坐標(biāo)為( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(π,3))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(2π,3)))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(4π,3))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(5π,3)))
聽(tīng)課記錄:_______________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________
思維升華 (1)直角坐標(biāo)方程化為極坐標(biāo)方程時(shí),將x=ρcs θ及y=ρsin θ直接代入并化簡(jiǎn)即可.
(2)極坐標(biāo)方程化為直角坐標(biāo)方程時(shí),常先通過(guò)變形,構(gòu)造形如ρcs θ,ρsin θ,ρ2的式子,再進(jìn)行整體代換.其中方程的兩邊同乘(或同除以)ρ及方程兩邊同時(shí)平方是常用的變形方法.但對(duì)方程進(jìn)行變形時(shí),方程必須同解,因此應(yīng)注意對(duì)變形過(guò)程的檢驗(yàn).
跟蹤訓(xùn)練1 (1)若點(diǎn)P的直角坐標(biāo)為eq \b\lc\(\rc\)(\a\vs4\al\c1(\r(2),\r(2))),那么它的極坐標(biāo)可表示為( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(7π,4))) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(3π,4)))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(5π,4))) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(π,4)))
(2)在極坐標(biāo)系中,已知兩點(diǎn)Aeq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(π,6))),Beq \b\lc\(\rc\)(\a\vs4\al\c1(3,\f(π,6))),則線(xiàn)段AB的長(zhǎng)為( )
A.eq \r(3) B.eq \r(2)
C.1 D.2
題型二 求曲線(xiàn)的極坐標(biāo)方程
例2 已知圓心C的極坐標(biāo)為eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(π,4))),且圓C經(jīng)過(guò)極點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)求過(guò)圓心C和圓與極軸交點(diǎn)(不是極點(diǎn))的直線(xiàn)的極坐標(biāo)方程.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思維升華 求曲線(xiàn)的極坐標(biāo)方程的步驟
(1)將已知條件轉(zhuǎn)化到直角坐標(biāo)系中.
(2)根據(jù)已知條件,得到曲線(xiàn)的直角坐標(biāo)方程.
(3)將曲線(xiàn)的直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程.
跟蹤訓(xùn)練2 已知圓C的直角坐標(biāo)方程為x2+y2-2x-2y-7=0,直線(xiàn)l過(guò)坐標(biāo)原點(diǎn)O,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程feq \b\lc\(\rc\)(\a\vs4\al\c1(ρ,θ))=0;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)設(shè)直線(xiàn)l與圓C交于A(yíng),B兩點(diǎn),當(dāng)eq \b\lc\|\rc\|(\a\vs4\al\c1(AB))=2eq \r(7)時(shí),求直線(xiàn)l的極坐標(biāo)方程.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
題型三 極坐標(biāo)方程的應(yīng)用
例3 在直角坐標(biāo)系xOy中,曲線(xiàn)C1的方程為y=k|x|+2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ2+2ρcs θ-3=0.
(1)求C2的直角坐標(biāo)方程;
(2)若C1與C2有且僅有三個(gè)公共點(diǎn),求C1的方程.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
思維升華 極坐標(biāo)方程及其應(yīng)用的解題策略
(1)求點(diǎn)到直線(xiàn)的距離.先將極坐標(biāo)系下點(diǎn)的坐標(biāo)、直線(xiàn)方程轉(zhuǎn)化為平面直角坐標(biāo)系下點(diǎn)的坐標(biāo)、直線(xiàn)方程,然后利用直角坐標(biāo)系中點(diǎn)到直線(xiàn)的距離公式求解.
(2)求線(xiàn)段的長(zhǎng)度.先將極坐標(biāo)系下的點(diǎn)的坐標(biāo)、曲線(xiàn)方程轉(zhuǎn)化為平面直角坐標(biāo)系下的點(diǎn)的坐標(biāo)、曲線(xiàn)方程,然后再求線(xiàn)段的長(zhǎng)度.
跟蹤訓(xùn)練3 已知曲線(xiàn)C的直角坐標(biāo)方程為(x-2)2+eq \b\lc\(\rc\)(\a\vs4\al\c1(y-2))2=8,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線(xiàn)C的極坐標(biāo)方程;
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
(2)設(shè)射線(xiàn)l1:θ=eq \f(π,3),l2:θ=eq \f(π,6).若l1,l2分別與曲線(xiàn)C相交于異于原點(diǎn)的兩點(diǎn)A,B,求△ABO的面積.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________曲線(xiàn)
圖形
極坐標(biāo)方程
圓心在極點(diǎn),半徑為r的圓
圓心為(r,0),半徑為r的圓
圓心為eq \b\lc\(\rc\)(\a\vs4\al\c1(r,\f(π,2))),半徑為r的圓
過(guò)極點(diǎn),傾斜角為α的直線(xiàn)
θ=α(ρ∈R)或θ=π+α(ρ∈R)
過(guò)點(diǎn)(a,0),與極軸垂直的直線(xiàn)
過(guò)點(diǎn)eq \b\lc\(\rc\)(\a\vs4\al\c1(a,\f(π,2))),與極軸平行的直線(xiàn)
這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十二章 §12.4 不等式的證明(附答單獨(dú)案解析),共4頁(yè)。
這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十二章 §12.3 絕對(duì)值不等式(附答單獨(dú)案解析),共3頁(yè)。
這是一份2024年數(shù)學(xué)高考大一輪復(fù)習(xí)第十二章 §12.2 參數(shù)方程(附答單獨(dú)案解析),共4頁(yè)。
微信掃碼,快速注冊(cè)
注冊(cè)成功