2022-2023學(xué)年南京市中華中學(xué)高二下學(xué)期期末試卷一.選擇題(共8小題,每小題5分,共401.已知集合,2,3,,則  A B C, D2,4 2.現(xiàn)有四個(gè)函數(shù):,;的圖象(部分)如圖,但順序被打亂,則按照從左到右將圖象對應(yīng)的函數(shù)序號排序正確的一組是  A③②①④ B②① C②①③④ D①②③④3.冪函數(shù)上是減函數(shù),則實(shí)數(shù)值為  A2 B C2 D14.已知,,,則  A  B C D5.函數(shù)在區(qū)間上的最大值為  A1 B C D6.已知,則下列不等式一定成立的是  A B C D7.已知函數(shù)的定義域?yàn)?/span>,且為奇函數(shù),為偶函數(shù),且對任意的,,且,都有,則下列結(jié)論錯(cuò)誤的為  A是偶函數(shù) B C的圖象關(guān)于對稱 D8.若直線與曲線相切,直線與曲線相切.則的值為  A B1 C D選擇題(共4小題,每小題5分,共209.下列說法正確的是  A的充分不必要條件 B的必要不充分條件 C對任意一個(gè)無理數(shù)也是無理數(shù)是真命題 D.命題,的否定是,10.幾位同學(xué)在研究函數(shù)時(shí),給出了下列四個(gè)結(jié)論,其中所有正確結(jié)論的序號是   A的圖象關(guān)于軸對稱;B上單調(diào)遞減;C的值域?yàn)?/span>;D當(dāng)時(shí),有最大值;11.若對任意恒成立,其中是整數(shù),則的可能取值為  A B C D12.已知關(guān)于的方程有兩個(gè)不等的實(shí)根,,且,則下列說法正確的有  A B C D填空題(共4小題,每小題5分,共2013.設(shè)集合,,則滿足的實(shí)數(shù)的值所成集合為  14.已知非負(fù)數(shù)滿足,則的最小值是   15.若直線是曲線的公切線,則實(shí)數(shù)的值是   16.已知是定義在上的奇函數(shù),當(dāng)時(shí),有下列結(jié)論:函數(shù)上單調(diào)遞增;函數(shù)的圖象與直線有且僅有2個(gè)不同的交點(diǎn);若關(guān)于的方程恰有4個(gè)不相等的實(shí)數(shù)根,則這4個(gè)實(shí)數(shù)根之和為8;記函數(shù)上的最大值為,則數(shù)列的前7項(xiàng)和為其中所有正確結(jié)論的編號是   解答題(共6小題,共701710已知命題:存在實(shí)數(shù),使成立.1)若命題為真命題,求實(shí)數(shù)的取值范圍;2)若命題:任意實(shí)數(shù),使恒成立,如果命題為假命題,求實(shí)數(shù)的取值范圍.1812已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).1)求的值;2若對任意的,不等式恒成立,求的取值范圍.1912已知函數(shù),1)若,求函數(shù),的值域;2,則,已知函數(shù)在區(qū)間,有零點(diǎn),求實(shí)數(shù)的取值范圍.2012已知函數(shù),其中實(shí)數(shù)a,b,c滿足2b=a+c1)若b=0,單調(diào)遞增,求a取值范圍;2)若b-a=3,求函數(shù)的極值 .2112歐拉對函數(shù)的發(fā)展做出了巨大貢獻(xiàn),除特殊符號、概念名稱的界定外,歐拉還基于初等函數(shù)研究了抽象函數(shù)的性質(zhì),例如,歐拉引入倒函數(shù)的定義:對于函數(shù),如果對于其定義域中任意給定的實(shí)數(shù),都有,并且,就稱函數(shù)為倒函數(shù).1)已知,判斷是不是倒函數(shù),并說明理由;2上的倒函數(shù),其函數(shù)值恒大于0,且在上是嚴(yán)格增函數(shù).記,證明:的充要條件.2212已知函數(shù)1)討論的單調(diào)性;2)若,求實(shí)數(shù)的取值范圍.
2022-2023學(xué)年南京市中華中學(xué)高二下學(xué)期期末試卷一.選擇題(共8小題,每小題5分,共401.已知集合,23,,則  A B C, D2,4 【解答】解:2,3,,,,故選:2.現(xiàn)有四個(gè)函數(shù):,;的圖象(部分)如圖,但順序被打亂,則按照從左到右將圖象對應(yīng)的函數(shù)序號排序正確的一組是  A③②①④ B②① C②①③④ D①②③④【解答】對于函數(shù),有,所以為奇函數(shù),圖象關(guān)于原點(diǎn)對稱,且時(shí),,所以對應(yīng)的是第個(gè)三函數(shù)圖象;對于函數(shù),有,所以函數(shù)是偶函數(shù),所以函數(shù)對應(yīng)的是第二個(gè)函數(shù)圖象;對于函數(shù),為冪函數(shù),且在上是減函數(shù),所以函數(shù)對應(yīng)的圖象是第一個(gè)圖象;對于函數(shù),當(dāng)時(shí),所以函數(shù)對應(yīng)的是第四個(gè)函數(shù)圖象;則按照圖象從左到右的順序?qū)?yīng)的應(yīng)該為③②①④.故選:A3.冪函數(shù)上是減函數(shù),則實(shí)數(shù)值為  A2 B C2 D1【解答】解:冪函數(shù),,解得,或;時(shí)為減函數(shù),當(dāng)時(shí),,冪函數(shù)為,滿足題意;當(dāng)時(shí),,冪函數(shù)為,不滿足題意;綜上,故選:4.已知,,,則  A  B C D【解答】易知,,而,故,又因?yàn)?/span>,,故,即,所以,故選:D5.函數(shù)在區(qū)間,上的最大值為  A1 B C D【解答】解:因?yàn)楹瘮?shù),,所以,當(dāng)時(shí),,,,所以所以,上單調(diào)遞減,所以函數(shù)在區(qū)間,上的最大值為故選:6.已知,則下列不等式一定成立的是  A B C D【解答】解:由可知,所以,所以錯(cuò)誤;因?yàn)?/span>,但無法判定1的大小,所以錯(cuò)誤;當(dāng)時(shí),,故錯(cuò)誤;因?yàn)?/span>,所以,故正確.故選:7.已知函數(shù)的定義域?yàn)?/span>,且為奇函數(shù),為偶函數(shù),且對任意的,且,都有,則下列結(jié)論錯(cuò)誤的為  A是偶函數(shù) B C的圖象關(guān)于對稱 D【解答】解:根據(jù)題意,函數(shù)的定義域?yàn)?/span>,且為奇函數(shù),為偶函數(shù),的圖象關(guān)于點(diǎn)對稱,同時(shí)關(guān)于直線對稱,則有,,則有,故有,則函數(shù)是周期為4的周期函數(shù),依次分析選項(xiàng):對于,的圖象關(guān)于點(diǎn)對稱,同時(shí)關(guān)于直線對稱,,即軸也是函數(shù)的對稱軸,則為偶函數(shù),正確;對于,是周期為4的周期函數(shù),則31,正確;對于,的圖象關(guān)于點(diǎn)對稱,為偶函數(shù),所以的圖象關(guān)于點(diǎn)對稱,正確;對于,對任意的,,且,都有,則在區(qū)上為增函數(shù),為偶函數(shù),則,的圖象關(guān)于直線對稱,,又由,故,錯(cuò)誤;故選:8.若直線與曲線相切,直線與曲線相切.則的值為  A B1 C D【解答】解:的導(dǎo)數(shù)為的導(dǎo)數(shù)為,設(shè)與曲線相切的切點(diǎn)為,直線與曲線相切的切點(diǎn)為,所以,,即,,,即,,即,可得,考慮為方程的根,為方程的根,分別畫出,的圖像,可得的交點(diǎn)與的交點(diǎn)關(guān)于直線對稱,,即故選:9.下列說法正確的是  A的充分不必要條件 B的必要不充分條件 C對任意一個(gè)無理數(shù),也是無理數(shù)是真命題 D.命題,的否定是,【解答】解:對于,若,則,,因?yàn)?/span>,所以,所以的充分不必要條件,故正確;對于的既不充分也不必要條件,故錯(cuò)誤;對于:取為無理數(shù),則為有理數(shù),故錯(cuò)誤;對于:命題,的否定是,正確.故選:10.幾位同學(xué)在研究函數(shù)時(shí),給出了下列四個(gè)結(jié)論,其中所有正確結(jié)論的序號是   A的圖象關(guān)于軸對稱;B上單調(diào)遞減;C的值域?yàn)?/span>D當(dāng)時(shí),有最大值;【解答】解:根據(jù)題意,依次判斷4個(gè)結(jié)論:對于A,的定義域?yàn)?/span>,且,是偶函數(shù),其的圖象關(guān)于軸對稱,故正確;對于B,當(dāng)時(shí),上單調(diào)遞減,故正確;對于C,,故的值域不是,故錯(cuò)誤;對于D,當(dāng)時(shí),,則,上單調(diào)遞增,是偶函數(shù),故上單調(diào)遞減,上的有最大值,故正確.故答案為:ABD11.若對任意,恒成立,其中,是整數(shù),則的可能取值為  A B C D【解答】解:當(dāng)時(shí),由可得對任意,恒成立,對任意恒成立,此時(shí)不存在;當(dāng)時(shí),由對任意,恒成立,可設(shè),,作出,的圖象如下,由題意可知,再由,是整數(shù)可得所以的可能取值為故選:12.已知關(guān)于方程有兩個(gè)不等的實(shí)根,,且,則下列說法正確的有  A B C D【解答】解:方程,可化為因?yàn)榉匠?/span>有兩個(gè)不等的實(shí)根,,所以有兩個(gè)不同的交點(diǎn),,則,可得,當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),,函數(shù)單調(diào)遞增,,當(dāng)時(shí),,且,當(dāng)時(shí),,當(dāng)時(shí),與一次函數(shù)相比,指數(shù)函數(shù)呈爆炸性增長,當(dāng)時(shí),,根據(jù)以上信息,可得函數(shù)的大致圖象如下:,且,故正確.因?yàn)?/span>,構(gòu)造,,上單調(diào)遞增,,,即,單調(diào)遞增所以,故正確.對于,由,所以,所以,則,所以,故錯(cuò)誤.對于,由,可得所以,正確.故選:13.設(shè)集合,,則滿足的實(shí)數(shù)的值所成集合為 , 【解答】解:,當(dāng),無解,故,滿足條件,則,或,或故滿足條件的實(shí)數(shù),故答案為,,14.已知非負(fù)數(shù)滿足,則的最小值是  4 【解答】解:由,可得,當(dāng)且僅當(dāng),即時(shí)取等號.故答案為:415.若直線是曲線的公切線,則實(shí)數(shù)的值是  0 【解答】解:設(shè)直線與曲線、分別相切于點(diǎn)、對函數(shù)求導(dǎo)得,則曲線在點(diǎn)處的切線方程為,即,對函數(shù)求導(dǎo)得,則,曲線在點(diǎn)處的切線方程為,即,所以,,化簡可得故答案為:016.已知是定義在上的奇函數(shù),當(dāng)時(shí),有下列結(jié)論:函數(shù)上單調(diào)遞增;函數(shù)的圖象與直線有且僅有2個(gè)不同的交點(diǎn);若關(guān)于的方程恰有4個(gè)不相等的實(shí)數(shù)根,則這4個(gè)實(shí)數(shù)根之和為8;記函數(shù),上的最大值為,則數(shù)列的前7項(xiàng)和為其中所有正確結(jié)論的編號是  ①④ 【解答】解:當(dāng)時(shí),,此時(shí)不滿足方程,,則,即,,則,即,作出函數(shù)的圖象,如圖所示:對于,由圖可知,函數(shù)上單調(diào)遞增,由奇函數(shù)性質(zhì)可知,函數(shù)上單調(diào)遞增,故正確;對于,可知函數(shù)在時(shí)的圖象與直線1個(gè)交點(diǎn),結(jié)合函數(shù)的奇偶性可知,的圖象與直線3個(gè)不同的交點(diǎn),故錯(cuò)誤;對于,設(shè),則關(guān)于的方程等價(jià)于,解得 當(dāng)時(shí),即對應(yīng)一個(gè)交點(diǎn)為,方程恰有4個(gè)不同的根,可分為兩種情況:1,即對應(yīng)3個(gè)交點(diǎn),且,,此時(shí)4個(gè)實(shí)數(shù)根的和為8,2,即對應(yīng)3個(gè)交點(diǎn),且,,此時(shí)4個(gè)實(shí)數(shù)根的和為4,故錯(cuò)誤;對于,函數(shù),上的最大值為2,即,由函數(shù)解析式及性質(zhì)可知,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,則數(shù)列的前7項(xiàng)和為,故正確.故答案為:①④解答題(共6小題,共7017.已知命題:存在實(shí)數(shù),使成立.1)若命題為真命題,求實(shí)數(shù)的取值范圍;2)若命題:任意實(shí)數(shù),,使恒成立,如果命題為假命題,求實(shí)數(shù)的取值范圍.【解答】解:(1:存在實(shí)數(shù),使成立,實(shí)數(shù)的取值范圍為,2:任意實(shí)數(shù),,使恒成立,,,,命題為假命題,假,,,,,實(shí)數(shù)的取值范圍18.已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).1)求的值;2若對任意的,不等式恒成立,求的取值范圍.【解答】解:(1)根據(jù)題意,因?yàn)?/span>在定義域?yàn)?/span>上是奇函數(shù),所以,即;2是奇函數(shù),從而不等式:等價(jià)于,為減函數(shù),由上式推得:即對一切有:,從而判別式,的取值范圍是19.已知函數(shù)1)若,求函數(shù),的值域;2,則,已知函數(shù)在區(qū)間,有零點(diǎn),求實(shí)數(shù)的取值范圍.【解答】解:(1)因?yàn)?/span>所以,由二次函數(shù)的性質(zhì)可知,當(dāng),時(shí),函數(shù)為增函數(shù),以函數(shù)的最大值為4,函數(shù)的最小值為1,則函數(shù)的值域?yàn)?/span>,2,,由于,則,,則問題等價(jià)為,上有零點(diǎn),上有解,上有解,,,則,,則,上遞增,則當(dāng)時(shí),,當(dāng)時(shí),,即,即實(shí)數(shù)的取值范圍是2012已知函數(shù),其中實(shí)數(shù)a,b,c滿足2b=a+c1)若b=0,單調(diào)遞增,求a取值范圍;2)若b-a=3,求函數(shù)的極值 .【解答】解:1)因?yàn)?/span>,所以可得,故,因?yàn)?/span>上單調(diào)遞增,所以上恒成立,可得,故所以.2)因?yàn)?/span>,所以,所以說明:消元并化簡正確即可給分,也可以寫成,則,,解得,可得:x00單調(diào)遞增極大值單調(diào)遞減極小值單調(diào)遞增所以函數(shù)的極大值為,極小值為 21.歐拉對函數(shù)的發(fā)展做出了巨大貢獻(xiàn),除特殊符號、概念名稱的界定外,歐拉還基于初等函數(shù)研究了抽象函數(shù)的性質(zhì),例如,歐拉引入倒函數(shù)的定義:對于函數(shù),如果對于其定義域中任意給定的實(shí)數(shù),都有,并且,就稱函數(shù)為倒函數(shù).1)已知,判斷是不是倒函數(shù),并說明理由;2上的倒函數(shù),其函數(shù)值恒大于0,且在上是嚴(yán)格增函數(shù).記,證明:的充要條件.【解答】解:對于函數(shù),如果對于其定義域中任意給定的實(shí)數(shù),都有,并且,就稱函數(shù)為倒函數(shù),1)對于,定義域?yàn)?/span>,顯然定義域中任意實(shí)數(shù)成立,又,是倒函數(shù),對于,定義域?yàn)?/span>,故當(dāng)時(shí),不符合倒函數(shù)的定義,不是倒函數(shù);2上的倒函數(shù),其函數(shù)值恒大于0,且在上是嚴(yán)格增函數(shù),記,由題設(shè),,又上的倒函數(shù),,故,充分性:當(dāng)時(shí),,又上是嚴(yán)格增函數(shù),,故成立;必要性:當(dāng)時(shí),有,恒大于0,,即,上是嚴(yán)格增函數(shù),,即有成立;綜上,的充要條件.22.已知函數(shù)1)討論的單調(diào)性;2)若,求實(shí)數(shù)的取值范圍.【解答】解:(1)函數(shù)的定義域?yàn)?/span>,當(dāng)時(shí),令所以在,單調(diào)遞增,當(dāng)時(shí),,所以在單調(diào)遞增,當(dāng)時(shí),令,所以在單調(diào)遞增,單調(diào)遞減,綜上所述,當(dāng)時(shí),上單調(diào)遞增,當(dāng)時(shí),上單調(diào)遞增,在,上單調(diào)遞減.2)若,則所以,所以,,則不等式為,,所以上單調(diào)遞增,所以上恒成立,所以,,,,所以在,單調(diào)遞減,,單調(diào)遞增,所以1,所以所以的取值范圍為,

相關(guān)試卷

2022-2023學(xué)年江蘇省南京市中華中學(xué)高二下學(xué)期期末數(shù)學(xué)試題含答案:

這是一份2022-2023學(xué)年江蘇省南京市中華中學(xué)高二下學(xué)期期末數(shù)學(xué)試題含答案,共18頁。試卷主要包含了單選題,多選題,填空題,解答題等內(nèi)容,歡迎下載使用。

江蘇省南京市第一中學(xué)2022-2023學(xué)年高二下學(xué)期期末考試數(shù)學(xué)試卷:

這是一份江蘇省南京市第一中學(xué)2022-2023學(xué)年高二下學(xué)期期末考試數(shù)學(xué)試卷,共24頁。試卷主要包含了設(shè),下列結(jié)論正確的是等內(nèi)容,歡迎下載使用。

2020-2021學(xué)年江蘇省南京市建鄴區(qū)中華中學(xué)高一(下)期末數(shù)學(xué)試卷:

這是一份2020-2021學(xué)年江蘇省南京市建鄴區(qū)中華中學(xué)高一(下)期末數(shù)學(xué)試卷,共25頁。試卷主要包含了單項(xiàng)選擇題,多項(xiàng)選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

英語朗讀寶
資料下載及使用幫助
版權(quán)申訴
  • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
  • 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時(shí)請及時(shí)更新
  • 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

  • 0

    資料籃

  • 在線客服

    官方
    微信

    添加在線客服

    獲取1對1服務(wù)

  • 官方微信

    官方
    微信

    關(guān)注“教習(xí)網(wǎng)”公眾號

    打開微信就能找資料

  • 免費(fèi)福利

    免費(fèi)福利

返回
頂部