2021北京六十六中高一(下)期中數(shù)    學(xué)一、選擇題(每小題4分,共48分)1.(4分)下列各角中,與終邊相同的角是  A B C D2.(4分)若,且,則角  A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.(4分)若角的終邊經(jīng)過(guò)點(diǎn),則的值為  A B C D4.(4分)  A B C D5.(4分)已知向量的,,那么  A B2 C D6.(4分)函數(shù)  A.奇函數(shù),且在區(qū)間上單調(diào)遞增 B.奇函數(shù),且在區(qū)間上單調(diào)遞減 C.偶函數(shù),且在區(qū)間上單調(diào)遞增 D.偶函數(shù),且在區(qū)間上單調(diào)遞減7.(4分)函數(shù)最小正周期為  A B C D8.(4分)設(shè)向量,模分別23,且?jiàn)A角為,則等于  A B13 C D199.(4分)已知函數(shù),則  A B C1 D10.(4分)如果函數(shù)的一個(gè)零點(diǎn)是,那么可以是  A B C D11.(4分)為得到函數(shù)圖象,只需將函數(shù)圖象  A.向左平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位 C.向左平移個(gè)長(zhǎng)度單位 D.向右平移個(gè)長(zhǎng)度單位12.(4分)已知,為單位向量,且,則的最小值為  A B1 C D二、填空題(每小題5分,共3013.(5分)的值為  14.(5分)是虛數(shù)單位,若復(fù)數(shù)滿足,則等于  15.(5分)若向量與向量垂直,則實(shí)數(shù)  16.(5分)若,,且,則的值為  17.(5分)如圖,正方形的邊長(zhǎng)為2,是線段上的動(dòng)點(diǎn)(含端點(diǎn)),則的取值范圍是  18.(5分)設(shè)函數(shù),若對(duì)任意的實(shí)數(shù)都成立,則的最小值為  三、解答題(滿分72分)19.(14分)已知,且)求的值;)求的值.20.(14分)已知函數(shù))求函數(shù)的單調(diào)遞增區(qū)間與對(duì)稱軸方程;)當(dāng)時(shí),求函數(shù)的最大值與最小值.21.(15分)已知函數(shù),的部分圖象如圖所示.)寫出最小正周期及其單調(diào)遞減區(qū)間;)求的解析式;)若要得到圖象,只需要函數(shù)圖象經(jīng)過(guò)怎樣的圖象變換?22.(15分)已知函數(shù))求的值;)求的單調(diào)遞增區(qū)間;作出在一個(gè)周期內(nèi)的圖象23.(14分)如圖,在平面直角坐標(biāo)系中,點(diǎn),,,銳角的終邊與單位圓交于點(diǎn))用的三角函數(shù)表示點(diǎn)的坐標(biāo);)當(dāng)時(shí),求的值;)在軸上是否存在定點(diǎn),使得成立?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
參考答案一、選擇題(每小題4分,共48分)1.【分析】把角化為對(duì)于,,的形式,再判斷即可.【解答】解:與邊相同的角的集合為,得故選:【點(diǎn)評(píng)】本題考查了終邊相同的角的概念與應(yīng)用問(wèn)題,是基礎(chǔ)題.2.【分析】直接由三角函數(shù)的象限符號(hào)取交集得答案.【解答】解:由,可得為第一、第二及軸正半軸上的角;,可得為第二、第三及軸負(fù)半軸上的角.取交集可得,是第二象限角.故選:【點(diǎn)評(píng)】本題考查了三角函數(shù)的象限符號(hào),是基礎(chǔ)的會(huì)考題型.3.【分析】由三角函數(shù)的定義,求出值即可【解答】解:的終邊經(jīng)過(guò)點(diǎn),故選:【點(diǎn)評(píng)】本題考查三角函數(shù)的定義,利用公式求值是關(guān)鍵.4.【分析】利用誘導(dǎo)公式即可求解.【解答】解:故選:【點(diǎn)評(píng)】本題主要考查了誘導(dǎo)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.5.【分析】可求出向量的坐標(biāo),然后即可得出的值.【解答】解:故選:【點(diǎn)評(píng)】本題考查了向量坐標(biāo)的加法和數(shù)乘運(yùn)算,根據(jù)向量的坐標(biāo)求向量長(zhǎng)度的方法,考查了計(jì)算能力,屬于基礎(chǔ)題.6.【分析】由余弦函數(shù)的性質(zhì)可解決此題.【解答】解:,定義域?yàn)?/span>,函數(shù)為偶函數(shù);由余弦函數(shù)圖象可知函數(shù)上單調(diào)遞減.故選:【點(diǎn)評(píng)】本題考查余弦函數(shù)的性質(zhì)、數(shù)形結(jié)合思想,考查數(shù)學(xué)運(yùn)算能力、直觀想象及推理能力,屬于基礎(chǔ)題.7.【分析】化簡(jiǎn)可得,由周期公式可得答案.【解答】解:化簡(jiǎn)可得,由周期公式可得,故選:【點(diǎn)評(píng)】本題考查三角函數(shù)的恒等變換,涉及三角函數(shù)的周期性,屬基礎(chǔ)題.8.【分析】利用兩個(gè)向量的數(shù)量積的定義求出,再利用,即可求出答案.【解答】解:向量,模分別23,且?jiàn)A角為,,故選:【點(diǎn)評(píng)】本題考查兩個(gè)向量的數(shù)量積的定義,向量的模的定義,求向量的模的方法.9.【分析】由兩角和的正弦公式化簡(jiǎn)解析式后代入即可求解.【解答】解:,,故選:【點(diǎn)評(píng)】本題主要考查了兩角和與差的正弦函數(shù)公式的應(yīng)用,屬于基礎(chǔ)題.10.【分析】根據(jù)余弦函數(shù)的性質(zhì)即可得到結(jié)論.【解答】解:若的一個(gè)零點(diǎn)是,,,當(dāng)時(shí),故選:【點(diǎn)評(píng)】本題主要考查余弦函數(shù)的求值,根據(jù)函數(shù)零點(diǎn)的定義結(jié)合余弦函數(shù)的性質(zhì)是解決本題的關(guān)鍵.11.【分析】將化為,再根據(jù)三角函數(shù)的圖象變換知識(shí)確定平移的方向和長(zhǎng)度即可.【解答】解:,,故只需將函數(shù)圖象向左平移個(gè)長(zhǎng)度單位.故選:【點(diǎn)評(píng)】本題考查了三角函數(shù)的圖象變換,中間用到了誘導(dǎo)公式,屬于??碱}型.12.【分析】運(yùn)用向量的數(shù)量積的性質(zhì),向量的平方即為模的平方,配方整理,再由二次函數(shù)的最值求法,即可得到所求最值.【解答】解:,為單位向量,且,當(dāng)時(shí),取得最小值,的最小值為故選:【點(diǎn)評(píng)】本題考查平面向量的數(shù)量積的性質(zhì),考查二次函數(shù)的最值求法,考查運(yùn)算能力,屬于基礎(chǔ)題.二、填空題(每小題5分,共3013.【分析】原式中的角度變形后,利用誘導(dǎo)公式化簡(jiǎn),計(jì)算即可得到結(jié)果.【解答】解:故答案為:【點(diǎn)評(píng)】此題考查了運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.14.【分析】把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.【解答】解:由,故答案為:【點(diǎn)評(píng)】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.15.【分析】由題意利用兩個(gè)向量垂直的性質(zhì),求得的值.【解答】解:向量與向量垂直,,求得故答案為:8【點(diǎn)評(píng)】本題主要考查兩個(gè)向量垂直的性質(zhì),屬于基礎(chǔ)題.16.【分析】根據(jù)余弦函數(shù)的圖象與性質(zhì),求出,內(nèi)值即可.【解答】解:在內(nèi),值有2個(gè),分別為,故答案為:【點(diǎn)評(píng)】本題考查了余弦函數(shù)的圖象與性質(zhì)的應(yīng)用問(wèn)題,是基礎(chǔ)題.17.【分析】建立平面直角坐標(biāo)系,得到,,的坐標(biāo),利用向量的數(shù)量積解答.【解答】解:建立平面直角坐標(biāo)系,正方形的邊長(zhǎng)為2是線段上的動(dòng)點(diǎn)(含端點(diǎn)),,,,所以,所以,所以,故答案為:,【點(diǎn)評(píng)】本題考查了利用平面向量求數(shù)量積的范圍;本題的關(guān)鍵是正確建立坐標(biāo)系,明確各點(diǎn)的坐標(biāo)以及向量的坐標(biāo),了利用坐標(biāo)運(yùn)算解答.18.【分析】由題意可得的最小值為,可得,解方程可得的最小值.【解答】解:若對(duì)任意的實(shí)數(shù)都成立,可得的最小值為,可得,即有,,可得的最小值為2,此時(shí)故答案為:2【點(diǎn)評(píng)】本題考查正弦函數(shù)的圖象和性質(zhì),主要是正弦函數(shù)的最值,以及方程思想和運(yùn)算能力,屬于基礎(chǔ)題.三、解答題(滿分72分)19.【分析】()由已知利用同角三角函數(shù)基本關(guān)系式可求,的值,利用兩角和的正切函數(shù)公式即可得解.)利用倍角公式化簡(jiǎn)后,代入即可求值得解.【解答】解:(,,且,,【點(diǎn)評(píng)】本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式,倍角公式的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.20.【分析】()解可得單調(diào)遞增區(qū)間,解可得對(duì)稱軸方程;)由的范圍可得,可得三角函數(shù)的最值.【解答】解:(,可得,函數(shù)的單調(diào)遞增區(qū)間為,,可得,,的對(duì)稱軸方程為,;,,,當(dāng)時(shí),的最小值為,當(dāng)時(shí),的最大值為2【點(diǎn)評(píng)】本題考查三角函數(shù)的最值,涉及三角函數(shù)的單調(diào)性和對(duì)稱性,屬基礎(chǔ)題.21.【分析】()直接利用函數(shù)的圖象求出函數(shù)的關(guān)系式,進(jìn)一步求出函數(shù)的最小正值周期和單調(diào)遞減區(qū)間;)利用函數(shù)的圖象求出函數(shù)的關(guān)系式;)利用函數(shù)的圖象的平移變換和伸縮變換的應(yīng)用求出結(jié)果.【解答】解:()根據(jù)函數(shù)的圖象,解得,,由于由于,故所以所以函數(shù)的最小正周期為;,整理得,故函數(shù)的單調(diào)遞減區(qū)間為:)由函數(shù)的圖象,得到)要得到函數(shù)圖象,只需將函數(shù)圖象向右平移個(gè)單位,再將函數(shù)圖象的橫標(biāo)壓縮為原來(lái)的即可.【點(diǎn)評(píng)】本題考查的知識(shí)要點(diǎn):三角函數(shù)的關(guān)系式的變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和數(shù)學(xué)思維能力,屬于基礎(chǔ)題.22.【分析】()把直接代入函數(shù)的解析式,求得函數(shù)的值.)利用兩角和差的正弦公式化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的單調(diào)性求出它的增區(qū)間.)用五點(diǎn)法作函數(shù)在一個(gè)周期上的簡(jiǎn)圖.【解答】解:()由已知2分)4分)6分)7分)函數(shù)的單調(diào)遞增區(qū)間為,8分),得所以的單調(diào)遞增區(qū)間為9分))列表:00200作出在一個(gè)周期上的圖象如圖所示.12分)【點(diǎn)評(píng)】本題主要考查用五點(diǎn)法作函數(shù)在一個(gè)周期上的簡(jiǎn)圖,兩角和差的正弦公式,正弦函數(shù)的單調(diào)性,屬于中檔題.23.【分析】()用的三角函數(shù)的坐標(biāo)法定義得到 坐標(biāo);)首先寫成兩個(gè)向量的坐標(biāo)根據(jù),得到關(guān)于的三角函數(shù)等式,求的值;)假設(shè)存在,進(jìn)行向量的模長(zhǎng)運(yùn)算,得到三角等式,求得成立的值.【解答】解:銳角的終邊與單位圓交于點(diǎn))用的三角函數(shù)表示點(diǎn)的坐標(biāo)為;,,時(shí),,整理得到,所以銳角;)在軸上假設(shè)存在定點(diǎn),設(shè),則由成立,得到,整理得,所以存在時(shí)等式成立,所以存在【點(diǎn)評(píng)】本題考查了三角函數(shù)的坐標(biāo)法定義的運(yùn)用以及平面向量的運(yùn)算;關(guān)鍵是正確利用坐標(biāo)表示各向量,并正確化簡(jiǎn)運(yùn)算.

相關(guān)試卷

2022北京六十六中高一下學(xué)期期中數(shù)學(xué)試卷:

這是一份2022北京六十六中高一下學(xué)期期中數(shù)學(xué)試卷,共3頁(yè)。

2021北京六十六中高一下學(xué)期期中數(shù)學(xué)試卷及答案:

這是一份2021北京六十六中高一下學(xué)期期中數(shù)學(xué)試卷及答案,共13頁(yè)。試卷主要包含了選擇題.,填空題(每小題5分,共30分,解答題等內(nèi)容,歡迎下載使用。

2022北京一五六中高一(上)期中數(shù)學(xué)(教師版):

這是一份2022北京一五六中高一(上)期中數(shù)學(xué)(教師版),共14頁(yè)。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期中專區(qū)
  • 精品推薦
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部