



2022年江蘇省常州市金壇區(qū)白塔中學中考數(shù)學模擬精編試卷含解析
展開
這是一份2022年江蘇省常州市金壇區(qū)白塔中學中考數(shù)學模擬精編試卷含解析,共16頁。試卷主要包含了考生必須保證答題卡的整潔,計算x﹣2y﹣等內(nèi)容,歡迎下載使用。
2021-2022中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。 一、選擇題(共10小題,每小題3分,共30分)1.由一些大小相同的小正方形搭成的幾何體的左視圖和俯視圖,如圖所示,則搭成該幾何體的小正方形的個數(shù)最少是( )A.4 B.5 C.6 D.72.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優(yōu)弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為( ?。?/span>A.π B.π C.π D.π3.如圖,在△ABC中,∠C=90°,將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,已知MN∥AB,MC=6,NC=,則四邊形MABN的面積是( )A. B. C. D.4.在△ABC中,∠C=90°,,那么∠B的度數(shù)為( )A.60° B.45° C.30° D.30°或60°5.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是 ( )A. B. C. D. 6.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h7.下列四個圖案中,不是軸對稱圖案的是( ?。?/span>A. B. C. D.8.計算x﹣2y﹣(2x+y)的結果為( )A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y9.如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是( )A.48 B.60C.76 D.8010.有一種球狀細菌的直徑用科學記數(shù)法表示為2.16×10﹣3米,則這個直徑是( ?。?/span>A.216000米 B.0.00216米C.0.000216米 D.0.0000216米二、填空題(本大題共6個小題,每小題3分,共18分)11.某航空公司規(guī)定,旅客乘機所攜帶行李的質量x(kg)與其運費y(元)由如圖所示的一次函數(shù)圖象確定,則旅客可攜帶的免費行李的最大質量為 kg12.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.13.如圖,AB為⊙O的直徑,C、D為⊙O上的點,.若∠CAB=40°,則∠CAD=_____.14.如圖,AB,AC分別為⊙O的內(nèi)接正六邊形,內(nèi)接正方形的一邊,BC是圓內(nèi)接n邊形的一邊,則n等于_____.15.用48米長的竹籬笆在空地上,圍成一個綠化場地,現(xiàn)有兩種設計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現(xiàn)請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.16.因式分解:=______.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.18.(8分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數(shù);求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.19.(8分)某地區(qū)教育部門為了解初中數(shù)學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整).請根據(jù)統(tǒng)計圖中的信息解答下列問題:本次抽查的樣本容量是 ;在扇形統(tǒng)計圖中,“主動質疑”對應的圓心角為 度;將條形統(tǒng)計圖補充完整;如果該地區(qū)初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?20.(8分)如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.21.(8分)先化簡,再求值:先化簡÷(﹣x+1),然后從﹣2<x<的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.22.(10分)先化簡,然后從-2≤x≤2的范圍內(nèi)選取一個合適的整數(shù)作為x的值代入求值.23.(12分)平面直角坐標系中(如圖),已知拋物線經(jīng)過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)點E在拋物線的對稱軸上,且,求點E的坐標;(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側的拋物線上,,求點Q的坐標. 24.解不等式組請結合題意填空,完成本題的解答:(I)解不等式(1),得 ;(II)解不等式(2),得 ;(III)把不等式(1)和(2)的解集在數(shù)軸上表示出來:(IV)原不等式組的解集為 .
參考答案 一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:由題中所給出的左視圖知物體共兩層,每一層都是兩個小正方體;從俯視圖可以可以看出最底層的個數(shù)所以圖中的小正方體最少2+4=1.故選C.2、A【解析】
利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據(jù)弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和弧長公式.3、C【解析】連接CD,交MN于E,∵將△ABC沿直線MN翻折后,頂點C恰好落在AB邊上的點D處,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故選C.4、C【解析】
根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質,熟記特殊角的三角函數(shù)值是解答本題的突破點.5、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACD A′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關鍵.6、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B7、B【解析】
根據(jù)軸對稱圖形的定義逐項識別即可,一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A、是軸對稱圖形,故本選項錯誤;B、不是軸對稱圖形,故本選項正確;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形的識別,熟練掌握軸對稱圖形的定義是解答本題的關鍵.8、C【解析】
原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.9、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.10、B【解析】
絕對值小于1的負數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】2.16×10﹣3米=0.00216米.故選B.【點睛】考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定. 二、填空題(本大題共6個小題,每小題3分,共18分)11、20【解析】設函數(shù)表達式為y=kx+b把(30,300)、(50、900)代入可得:y=30x-600當y=0時x=20所以免費行李的最大質量為20kg12、3【解析】
以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,
,
∵△ACD,△ABE是等邊三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若點E,點B,點C不共線時,EC<BC+BE;
若點E,點B,點C共線時,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值為3,即BD的最大值為3.
故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.13、25°【解析】
連接BC,BD, 根據(jù)直徑所對的圓周角是直角,得∠ACB=90°,根據(jù)同弧或等弧所對的圓周角相等,得∠ABD=∠CBD,從而可得到∠BAD的度數(shù).【詳解】如圖,連接BC,BD,∵AB為⊙O的直徑,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案為25°.【點睛】本題考查了圓周角定理及直徑所對的圓周角是直角的知識點,解題的關鍵是正確作出輔助線.14、12【解析】連接AO,BO,CO,如圖所示:∵AB、AC分別為⊙O的內(nèi)接正六邊形、內(nèi)接正方形的一邊,∴∠AOB==60°,∠AOC==90°,∴∠BOC=30°,∴n==12,故答案為12.15、圓形【解析】
根據(jù)竹籬笆的長度可知所圍成的正方形的邊長,進而可計算出所圍成的正方形的面積;根據(jù)圓的周長公式,可知所圍成的圓的半徑,進而將圓的面積計算出來,兩者進行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.【點睛】此題主要考查實數(shù)的大小的比較在實際生活中的應用,所以學生在學這一部分時一定要聯(lián)系實際,不能死學.16、2(x+3)(x﹣3).【解析】試題分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).考點:因式分解. 三、解答題(共8題,共72分)17、證明見解析【解析】試題分析:通過全等三角形△ADE≌△CBF的對應角相等證得∠AED=∠CFB,則由平行線的判定證得結論.證明:∵平行四邊形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE與△CBF中,AD=BC,∠ADE=∠CBF, DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.18、(1)60°;(2)證明略;(3)【解析】
(1)根據(jù)∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;
(2)根據(jù)AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;
(3)連結OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°; (2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.19、 (1)560;(2)54;(3)補圖見解析;(4)18000人【解析】
(1)本次調查的樣本容量為224÷40%=560(人);(2)“主動質疑”所在的扇形的圓心角的度數(shù)是:360°×84560=54o; (3)“講解題目”的人數(shù)是:560?84?168?224=84(人).(4)60000×=18000(人), 答:在課堂中能“獨立思考”的學生約有18000人.20、證明見解析.【解析】試題分析:首先根據(jù)等邊對等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,進而得到∠C=∠D,根據(jù)等角對等邊可得CO=DO.試題解析:證明:∵AB∥CD∴∠A=∠D ∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考點:等腰三角形的性質與判定,平行線的性質21、﹣,﹣.【解析】
根據(jù)分式的減法和除法可以化簡題目中的式子,然后在-2< x<中選取一個使得原分式有意義的整數(shù)值代入化簡后的式子即可求出最后答案,值得注意的是,本題答案不唯一,x的值可以?。?/span>2、2中的任意一個.【詳解】原式====,∵-2< x<(x為整數(shù))且分式要有意義,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以選取x=2時,此時原式=-.【點睛】本題主要考查了求代數(shù)式的值,解本題的要點在于在化解過程中,求得x的取值范圍,從而再選取x=2得到答案.22、,當x=0時,原式=(或:當x=-1時,原式=).【解析】
先根據(jù)分式混合運算的法則把原式進行化簡,再選取合適的x的值代入進行計算即可.【詳解】解:原式=×=.x滿足﹣1≤x≤1且為整數(shù),若使分式有意義,x只能取0,﹣1.當x=0時,原式=﹣(或:當x=﹣1時,原式=).【點睛】本題考查分式的化簡求值,化簡的過程中要注意運算順序和分式的化簡.化簡的最后結果分子、分母要進行約分,注意運算的結果要化成最簡分式或整式.23、(1),頂點P的坐標為;(2)E點坐標為;(3)Q點的坐標為.【解析】
(1)利用交點式寫出拋物線解析式,把一般式配成頂點式得到頂點P的坐標;(2)設,根據(jù)兩點間的距離公式,利用得到,然后解方程求出t即可得到E點坐標;(3)直線交軸于,作于,如圖,利用得到,設,則,再在中利用正切的定義得到,即,然后解方程求出m即可得到Q點坐標.【詳解】解:(1)拋物線解析式為,即,,頂點P的坐標為;(2)拋物線的對稱軸為直線,設,,,解得,E點坐標為;(3)直線交x軸于F,作MN⊥直線x=2于H,如圖,,而,,設,則,在中,,,整理得,解得(舍去),,Q點的坐標為.【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質和銳角三角函數(shù)的定義;會利用待定系數(shù)法求函數(shù)解析式;理解坐標與圖形性質,記住兩點間的距離公式.24、(I)x≥1;(Ⅱ)x>2;(III)見解析;(Ⅳ)x≥1.【解析】
分別求出每一個不等式的解集,將不等式解集表示在數(shù)軸上即可得出兩不等式解集的公共部分,從而確定不等式組的解集.【詳解】(I)解不等式(1),得x≥1;(Ⅱ)解不等式(2),得x>2;(Ⅲ)把不等式(1)和(2)解集在數(shù)軸上表示出來,如下圖所示:(Ⅳ)原不等式組的解集為x≥1.【點睛】此題考查了解一元一次不等式組,以及在數(shù)軸上表示不等式的解集,準確求出每個不等式的解集是解本題的關鍵.
相關試卷
這是一份2023年江蘇省常州市金壇區(qū)中考數(shù)學二模試卷(含解析),共25頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2023年江蘇省常州市金壇區(qū)中考數(shù)學二模試卷(含解析),共26頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2023年江蘇省常州市金壇區(qū)中考數(shù)學二模試卷(含解析),共25頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

相關試卷 更多
- 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
- 2.壓縮包下載后請先用軟件解壓,再使用對應軟件打開;軟件版本較低時請及時更新
- 3.資料下載成功后可在60天以內(nèi)免費重復下載