?2021-2022中考數(shù)學模擬試卷
注意事項:
1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。
2.答題時請按要求用筆。
3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。
4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。
5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。

一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)
1.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的圖象可能是( ?。?br />
A. B. C. D.
2.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于( ?。?br />
A. B.2 C.4 D.3
3.對于兩組數(shù)據(jù)A,B,如果sA2>sB2,且,則(  )
A.這兩組數(shù)據(jù)的波動相同 B.數(shù)據(jù)B的波動小一些
C.它們的平均水平不相同 D.數(shù)據(jù)A的波動小一些
4.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F(xiàn),給出下列四個結(jié)論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結(jié)論正確的有( )

A.1個 B.2個 C.3個 D.4個
5.下面的圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A. B. C. D.
6.下列各曲線中表示y是x的函數(shù)的是( ?。?br /> A. B. C. D.
7.如圖,PB切⊙O于點B,PO交⊙O于點E,延長PO交⊙O于點A,連結(jié)AB,⊙O的半徑OD⊥AB于點C,BP=6,∠P=30°,則CD的長度是(  )

A. B. C. D.2
8.如圖,小穎為測量學校旗桿AB的高度,她在E處放置一塊鏡子,然后退到C處站立,剛好從鏡子中看到旗桿的頂部B.已知小穎的眼睛D離地面的高度CD=1.5m,她離鏡子的水平距離CE=0.5m,鏡子E離旗桿的底部A處的距離AE=2m,且A、C、E三點在同一水平直線上,則旗桿AB的高度為( ?。?br />
A.4.5m B.4.8m C.5.5m D.6 m
9.如圖是二次函數(shù)y=ax2+bx+c的圖象,對于下列說法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤當x>0時,y隨x的增大而減小,其中正確的是( ?。?br />
A.①②③ B.①②④ C.②③④ D.③④⑤
10.x=1是關(guān)于x的方程2x﹣a=0的解,則a的值是( ?。?br /> A.﹣2 B.2 C.﹣1 D.1
二、填空題(共7小題,每小題3分,滿分21分)
11.據(jù)報道,截止2018年2月,我國在澳大利亞的留學生已經(jīng)達到17.3萬人,將17.3萬用科學記數(shù)法表示為__________.
12.分解因式:9x3﹣18x2+9x= .
13.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環(huán)數(shù)相等,其中甲所得環(huán)數(shù)的方差為15,乙所得環(huán)數(shù)如下:0,1,5,9,10,那么成績較穩(wěn)定的是_____(填“甲”或“乙”).
14.已知一組數(shù)據(jù):3,3,4,5,5,則它的方差為____________
15.如圖,在△ABC中,DE∥BC,,則=_____.

16.如圖,是由一些大小相同的小正方體搭成的幾何體分別從正面看和從上面看得到的平面圖形,則搭成該幾何體的小正方體最多是_______個.

17.如圖,正方形ABCD中,E為AB的中點,AF⊥DE于點O,那么等于( )

A.; B.; C.; D..
三、解答題(共7小題,滿分69分)
18.(10分)某商場購進一批30瓦的LED燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:

LED燈泡
普通白熾燈泡
進價(元)
45
25
標價(元)
60
30
(1)該商場購進了LED燈泡與普通白熾燈泡共300個,LED燈泡按標價進行銷售,而普通白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利3200元,求該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為多少個?
(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡120個,在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的30%,并求出此時這批燈泡的總利潤為多少元?

19.(5分)某中學為了考察九年級學生的中考體育測試成績(滿分30分),隨機抽查了40名學生的成績(單位:分),得到如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

(1)圖中m的值為_______________.
(2)求這40個樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù):
(3)根據(jù)樣本數(shù)據(jù),估計該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生。
20.(8分)如圖,已知二次函數(shù)的圖象與軸交于,兩點在左側(cè)),與軸交于點,頂點為.

(1)當時,求四邊形的面積;
(2)在(1)的條件下,在第二象限拋物線對稱軸左側(cè)上存在一點,使,求點的坐標;
(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.
21.(10分)校車安全是近幾年社會關(guān)注的重大問題,安全隱患主要是超速和超載,某中學數(shù)學活動小組設(shè)計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側(cè)取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結(jié)果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)

22.(10分)如圖,直線y=kx+2與x軸,y軸分別交于點A(﹣1,0)和點B,與反比例函數(shù)y=的圖象在第一象限內(nèi)交于點C(1,n).求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達式;過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點,且PQ=2QD,求點D的坐標.

23.(12分)某校為了解學生的安全意識情況,在全校范圍內(nèi)隨機抽取部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學生,其中安全意識為“很強”的學生占被調(diào)查學生總數(shù)的百分比是 ;
(2)請將條形統(tǒng)計圖補充完整;
(3)該校有1800名學生,現(xiàn)要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據(jù)調(diào)查結(jié)果,估計全校需要強化安全教育的學生約有 名.
24.(14分)P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關(guān)于⊙O的“冪值”
(1)⊙O的半徑為6,OP=1.
①如圖1,若點P恰為弦AB的中點,則點P關(guān)于⊙O的“冪值”為_____;
②判斷當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關(guān)于⊙0的“冪值”的取值范圍;
(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;
(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關(guān)于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.




參考答案

一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)
1、C
【解析】
根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.
【詳解】
解:由二次函數(shù)的圖像可知a0,c0,
∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.
故選C.
【點睛】
本題考查了函數(shù)圖像的性質(zhì),屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關(guān)系是解題關(guān)鍵.
2、B
【解析】
【分析】依據(jù)點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設(shè)C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.
【詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,
設(shè)C(a,),則B(3a,),A(a,),
∵AC=BC,
∴﹣=3a﹣a,
解得a=1,(負值已舍去)
∴C(1,1),B(3,1),A(1,3),
∴AC=BC=2,
∴Rt△ABC中,AB=2,
故選B.
【點睛】本題主要考查了反比例函數(shù)圖象上點的坐標特征,注意反比例函數(shù)圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.
3、B
【解析】
試題解析:方差越小,波動越小.

數(shù)據(jù)B的波動小一些.
故選B.
點睛:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.
4、C
【解析】
利用“角邊角”證明△APE和△CPF全等,根據(jù)全等三角形的可得AE=CF,再根據(jù)等腰直角三角形的定義得到△EFP是等腰直角三角形,根據(jù)全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.
【詳解】
∵AB=AC,∠BAC=90°,點P是BC的中點,
∴AP⊥BC,AP=PC,∠EAP=∠C=45°,
∴∠APF+∠CPF=90°,
∵∠EPF是直角,
∴∠APF+∠APE=90°,
∴∠APE=∠CPF,
在△APE和△CPF中,

∴△APE≌△CPF(ASA),
∴AE=CF,故①②正確;
∵△AEP≌△CFP,同理可證△APF≌△BPE,
∴△EFP是等腰直角三角形,故③錯誤;
∵△APE≌△CPF,
∴S△APE=S△CPF,
∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,
故選C.
【點睛】
本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定與性質(zhì),根據(jù)同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關(guān)鍵,也是本題的突破點.
5、B
【解析】試題解析:A. 是軸對稱圖形但不是中心對稱圖形
B.既是軸對稱圖形又是中心對稱圖形;
C.是中心對稱圖形,但不是軸對稱圖形;
D.是軸對稱圖形不是中心對稱圖形;
故選B.
6、D
【解析】
根據(jù)函數(shù)的意義可知:對于自變量x的任何值,y都有唯一的值與之相對應(yīng),故D正確.
故選D.
7、C
【解析】
連接OB,根據(jù)切線的性質(zhì)與三角函數(shù)得到∠POB=60°,OB=OD=2,再根據(jù)等腰三角形的性質(zhì)與三角函數(shù)得到OC的長,即可得到CD的長.
【詳解】
解:如圖,連接OB,

∵PB切⊙O于點B,
∴∠OBP=90°,
∵BP=6,∠P=30°,
∴∠POB=60°,OD=OB=BPtan30°=6×=2,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵OD⊥AB,
∴∠OCB=90°,
∴∠OBC=30°,
則OC=OB=,
∴CD=.
故選:C.
【點睛】
本題主要考查切線的性質(zhì)與銳角的三角函數(shù),解此題的關(guān)鍵在于利用切線的性質(zhì)得到相關(guān)線段與角度的值,再根據(jù)圓和等腰三角形的性質(zhì)求解即可.
8、D
【解析】
根據(jù)題意得出△ABE∽△CDE,進而利用相似三角形的性質(zhì)得出答案.
【詳解】
解:由題意可得:AE=2m,CE=0.5m,DC=1.5m,
∵△ABC∽△EDC,
∴,
即,
解得:AB=6,
故選:D.
【點睛】
本題考查的是相似三角形在實際生活中的應(yīng)用,根據(jù)題意得出△ABE∽△CDE是解答此題的關(guān)鍵.
9、C
【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.
【詳解】
解:①由圖象可知:a>0,c<0,
∴ac<0,故①錯誤;
②由于對稱軸可知:<1,
∴2a+b>0,故②正確;
③由于拋物線與x軸有兩個交點,
∴△=b2﹣4ac>0,故③正確;
④由圖象可知:x=1時,y=a+b+c<0,
故④正確;
⑤當x>時,y隨著x的增大而增大,故⑤錯誤;
故選:C.
【點睛】
本題考查二次函數(shù),解題的關(guān)鍵是熟練運用二次函數(shù)的圖象與性質(zhì),本題屬于基礎(chǔ)題型.
10、B
【解析】
試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.
故選B.
考點:一元一次方程的解.

二、填空題(共7小題,每小題3分,滿分21分)
11、1.73×1.
【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).
【詳解】
將17.3萬用科學記數(shù)法表示為1.73×1.
故答案為1.73×1.
【點睛】
本題考查了正整數(shù)指數(shù)科學計數(shù)法,根據(jù)科學計算法的要求,正確確定出a和n的值是解答本題的關(guān)鍵.
12、9x
【解析】
試題分析:首先提取公因式9x,然后利用完全平方公式進行因式分解.原式=9x(-2x+1)=9x.
考點:因式分解
13、甲.
【解析】
乙所得環(huán)數(shù)的平均數(shù)為:=5,
S2=[+++…+]
=[++++]
=16.4,
甲的方差<乙的方差,所以甲較穩(wěn)定.
故答案為甲.
點睛:要比較成績穩(wěn)定即比方差大小,方差越大,越不穩(wěn)定;方差越小,越穩(wěn)定.
14、
【解析】
根據(jù)題意先求出這組數(shù)據(jù)的平均數(shù)是:(3+3+4+5+5)÷5=4,再根據(jù)方差公式求出這組數(shù)據(jù)的方差為:×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=.
故答案為.
15、
【解析】
先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.
【詳解】
解:∵DE∥BC,,
∴,
由平行條件易證△ADE△ABC,
∴S△ADE:S△ABC=1:9,
∴=.
【點睛】
本題考查了相似三角形的判定和性質(zhì),中等難度,熟記相似三角形的面積比等于相似比的平方是解題關(guān)鍵.
16、7
【解析】
首先利用從上面看而得出的俯視圖得出該幾何體的第一層是由幾個小正方體組成,然后進一步根據(jù)其從正面看得出的主視圖得知其第二層最多可以放幾個小正方體,然后進一步計算即可得出答案.
【詳解】
根據(jù)俯視圖可得出第一層由5個小正方體組成;再結(jié)合主視圖,該正方體第二層最多可放2個小正方體,
∴,
∴最多是7個,
故答案為:7.
【點睛】
本題主要考查了三視圖的運用,熟練掌握三視圖的特性是解題關(guān)鍵.
17、D
【解析】
利用△DAO與△DEA相似,對應(yīng)邊成比例即可求解.
【詳解】
∠DOA=90°,∠DAE=90°,∠ADE是公共角,∠DAO=∠DEA
∴△DAO∽△DEA


∵AE=AD

故選D.

三、解答題(共7小題,滿分69分)
18、(1)LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個;(2)1 350元.
【解析】
1)設(shè)該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個,利用該商場購進了LED燈泡與普通白熾燈泡共300個和銷售完這批燈泡后可以獲利3200元列方程組,然后解方程組即可;
(2)設(shè)該商場購進LED燈泡a個,則購進普通白熾燈泡(120-a)個,這批燈泡的總利潤為W元,利用利潤的意義得到W=(60-45)a+(30-25)(120-a)=10a+1,再根據(jù)銷售完這批燈泡時獲利最多且不超過進貨價的30%可確定a的范圍,然后根據(jù)一次函數(shù)的性質(zhì)解決問題.
【詳解】
(1)設(shè)該商場購進LED燈泡x個,普通白熾燈泡的數(shù)量為y個.根據(jù)題意,得
解得
答:該商場購進LED燈泡與普通白熾燈泡的數(shù)量分別為200個和100個.
(2)設(shè)該商場再次購進LED燈泡a個,這批燈泡的總利潤為W元.則購進普通白熾燈泡(120﹣a)個.根據(jù)題意得
W=(60﹣45)a+(30﹣25)(120﹣a)=10a+1.
∵10a+1≤[45a+25(120﹣a)]×30%,解得a≤75,
∵k=10>0,∴W隨a的增大而增大,
∴a=75時,W最大,最大值為1350,此時購進普通白熾燈泡(120﹣75)=45個.
答:該商場再次購進LED燈泡75個,購進普通白熾燈泡45個,這批燈泡的總利潤為1 350元.
【點睛】
本題考查了二元一次方程組和一次函數(shù)的應(yīng)用,根據(jù)實際問題找到等量關(guān)系列方程組和建立一次函數(shù)模型,利用一次函數(shù)的性質(zhì)和自變量的取值范圍解決最值問題是解題的關(guān)鍵.
19、(1)25;(2)平均數(shù):28.15,所以眾數(shù)是28,中位數(shù)為28,(3)體育測試成績得滿分的大約有300名學生.
【解析】
(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以求得m的值;
(2)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以計算出平均數(shù),得到眾數(shù)和中位數(shù);
(3)根據(jù)樣本中得滿分所占的百分比,可以求得該中學九年級2000名學生中,體育測試成績得滿分的大約有多少名學生.
【詳解】
解:(1),∴m的值為25;
(2)平均數(shù):,
因為在這組樣本數(shù)據(jù)中,28出現(xiàn)了12次,出現(xiàn)的次數(shù)最多,所以眾數(shù)是28;
因為將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個數(shù)都是28,所以
這組樣本數(shù)據(jù)的中位數(shù)為28;
(3)×2000=300(名)
∴估計該中學九年級2000名學生中,體育測試成績得滿分的大約有300名學生.
【點睛】
本題考查條形統(tǒng)計圖、用樣本估計總體、加權(quán)平均數(shù)、中位數(shù)、眾數(shù),解答本題的關(guān)鍵是明確它們各自的計算方法.
20、(1)4;(2),;(3).
【解析】
(1)過點D作DE⊥x軸于點E,求出二次函數(shù)的頂點D的坐標,然后求出A、B、C的坐標,然后根據(jù)即可得出結(jié)論;
(2)設(shè)點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關(guān)于t的方程即可得出結(jié)論;
(3)判斷點D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設(shè)點,,過點作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.
【詳解】
解:(1)過點D作DE⊥x軸于點E

當時,得到,
頂點,
∴DE=1
由,得,;
令,得;
,,,
,OC=3

(2)如圖1,設(shè)點是第二象限拋物線對稱軸左側(cè)上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,

由翻折得:,
;
,
,
軸,,
,


由勾股定理得:,

,
,
,

,,
,
解得:(不符合題意,舍去),;
,.
(3)原拋物線的頂點在直線上,
直線交軸于點,
如圖2,過點作軸于,
;
由題意,平移后的新拋物線頂點為,解析式為,
設(shè)點,,則,,,
過點作于,于,軸于,

,


、分別平分,,

點在拋物線上,
,
根據(jù)題意得:
解得:

【點睛】
此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.
21、 (1) ;(2)此校車在AB路段超速,理由見解析.
【解析】
(1)結(jié)合三角函數(shù)的計算公式,列出等式,分別計算AD和BD的長度,計算結(jié)果,即可.(2)在第一問的基礎(chǔ)上,結(jié)合時間關(guān)系,計算速度,判斷,即可.
【詳解】
解:(1)由題意得,在Rt△ADC中,tan30°==,
解得AD=24.
在 Rt△BDC 中,tan60°==,
解得BD=8
所以AB=AD﹣BD=24﹣8=16(米).
(2)汽車從A到B用時1.5秒,所以速度為16÷1.5≈18.1(米/秒),
因為18.1(米/秒)=65.2千米/時>45千米/時,
所以此校車在AB路段超速.
【點睛】
考查三角函數(shù)計算公式,考查速度計算方法,關(guān)鍵利用正切值計算方法,計算結(jié)果,難度中等.
22、一次函數(shù)解析式為;反比例函數(shù)解析式為;.
【解析】
(1)根據(jù)A(-1,0)代入y=kx+2,即可得到k的值;
(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函數(shù)得到m的值;
(3)先根據(jù)D(a,0),PD∥y軸,即可得出P(a,2a+2),Q(a,),再根據(jù)PQ=2QD,即可得,進而求得D點的坐標.
【詳解】
(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,
∴一次函數(shù)解析式為y=2x+2;
把C(1,n)代入y=2x+2得n=4,
∴C(1,4),
把C(1,4)代入y=得m=1×4=4,
∴反比例函數(shù)解析式為y=;
(2)∵PD∥y軸,
而D(a,0),
∴P(a,2a+2),Q(a,),
∵PQ=2QD,
∴2a+2﹣=2×,
整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),
∴D(2,0).
【點睛】
本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)的解析式.
23、(1)120,30%;(2)作圖見解析;(3)1.
【解析】
試題分析:(1)用安全意識分“一般”的人數(shù)除以安全意識分“一般”的人數(shù)所占的百分比即可得這次調(diào)查一共抽取的學生人數(shù);用安全意識分“很強”的人數(shù)除以這次調(diào)查一共抽取的學生人數(shù)即可得安全意識“很強”的學生占被調(diào)查學生總數(shù)的百分比;(2)用這次調(diào)查一共抽取的學生人數(shù)乘以安全意識分“較強”的人數(shù)所占的百分比即可得安全意識分“較強”的人數(shù),在條形統(tǒng)計圖上畫出即可;(3)用總?cè)藬?shù)乘以安全意識為“淡薄”、 “一般”的學生一共所占的百分比即可得全校需要強化安全教育的學生的人數(shù).
試題解析:(1) 12÷15%=120人;36÷120=30%;
(2)120×45%=54人,補全統(tǒng)計圖如下:

(3)1800×=1人.
考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;用樣本估計總體.
24、(1)①20;②當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明見解析;(2)點P關(guān)于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.
【解析】
【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;
②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;
(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;
(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標,然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點間的距離公式可得到關(guān)于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.
【詳解】(1)①如圖1所示:連接OA、OB、OP,

∵OA=OB,P為AB的中點,
∴OP⊥AB,
∵在△PBO中,由勾股定理得:PB==2,
∴PA=PB=2,
∴⊙O的“冪值”=2×2=20,
故答案為:20;
②當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值,證明如下:
如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,

∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,
∴△APA′∽△B′PB,
∴,
∴PA?PB=PA′?PB′=20,
∴當弦AB的位置改變時,點P關(guān)于⊙O的“冪值”為定值;
(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,

∵AO=OB,PO⊥AB,
∴AP=PB,
∴點P關(guān)于⊙O的“冪值”=AP?PB=PA2,
在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,
∴關(guān)于⊙O的“冪值”=r2﹣d2,
故答案為:點P關(guān)于⊙O的“冪值”為r2﹣d2;
(3)如圖1所示:過點C作CP⊥AB,
,
∵CP⊥AB,AB的解析式為y=x+b,
∴直線CP的解析式為y=﹣x+.
聯(lián)立AB與CP,得,
∴點P的坐標為(﹣﹣b,+b),
∵點P關(guān)于⊙C的“冪值”為6,
∴r2﹣d2=6,
∴d2=3,即(﹣﹣b)2+(+b)2=3,
整理得:b2+2b﹣9=0,
解得b=﹣3或b=,
∴b的取值范圍是﹣3≤b≤,
故答案為:﹣3≤b≤.
【點睛】本題綜合性質(zhì)較強,考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質(zhì)、相似三角形的性質(zhì)和判定、一次函數(shù)的交點問題、兩點間的距離公式等,依據(jù)兩點間的距離公式列出關(guān)于b的方程,從而求得b的極值是解題的關(guān)鍵.

相關(guān)試卷

河北省保定市定興二中學三校區(qū)2021-2022學年中考聯(lián)考數(shù)學試卷含解析:

這是一份河北省保定市定興二中學三校區(qū)2021-2022學年中考聯(lián)考數(shù)學試卷含解析,共18頁。試卷主要包含了考生必須保證答題卡的整潔等內(nèi)容,歡迎下載使用。

2022屆河北省保定市定興二中學三校區(qū)重點名校中考數(shù)學全真模擬試卷含解析:

這是一份2022屆河北省保定市定興二中學三校區(qū)重點名校中考數(shù)學全真模擬試卷含解析,共19頁。試卷主要包含了考生必須保證答題卡的整潔,2018的相反數(shù)是,如圖所示的幾何體的主視圖是,下列運算正確的是等內(nèi)容,歡迎下載使用。

2021-2022學年河北省保定市定興二中學三校區(qū)重點名校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析:

這是一份2021-2022學年河北省保定市定興二中學三校區(qū)重點名校初中數(shù)學畢業(yè)考試模擬沖刺卷含解析,共21頁。試卷主要包含了解分式方程﹣3=時,去分母可得等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

2021-2022學年河北省廊坊市重點達標名校中考適應(yīng)性考試數(shù)學試題含解析

2021-2022學年河北省廊坊市重點達標名校中考適應(yīng)性考試數(shù)學試題含解析

2021-2022學年河北省保定市定興縣達標名校中考猜題數(shù)學試卷含解析

2021-2022學年河北省保定市定興縣達標名校中考猜題數(shù)學試卷含解析

2022屆河北省保定市定興二中學三校區(qū)中考聯(lián)考數(shù)學試卷含解析

2022屆河北省保定市定興二中學三校區(qū)中考聯(lián)考數(shù)學試卷含解析

2021-2022學年日照市重點名校中考適應(yīng)性考試數(shù)學試題含解析

2021-2022學年日照市重點名校中考適應(yīng)性考試數(shù)學試題含解析

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部