?2021-2022中考數(shù)學(xué)模擬試卷
注意事項(xiàng):
1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。
2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。
3.考試結(jié)束后,將本試卷和答題卡一并交回。

一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)
1.為了解中學(xué)300名男生的身高情況,隨機(jī)抽取若干名男生進(jìn)行身高測(cè)量,將所得數(shù)據(jù)整理后,畫(huà)出頻數(shù)分布直方圖(如圖).估計(jì)該校男生的身高在169.5cm~174.5cm之間的人數(shù)有( )

A.12 B.48 C.72 D.96
2.若a與﹣3互為倒數(shù),則a=( ?。?br /> A.3 B.﹣3 C. D.-
3.如圖,將邊長(zhǎng)為3a的正方形沿虛線剪成兩塊正方形和兩塊長(zhǎng)方形.若拿掉邊長(zhǎng)2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長(zhǎng)的邊長(zhǎng)為( ?。?br />
A.3a+2b B.3a+4b C.6a+2b D.6a+4b
4.2014年我省財(cái)政收入比2013年增長(zhǎng)8.9%,2015年比2014年增長(zhǎng)9.5%,若2013年和2015年我省財(cái)政收入分別為a億元和b億元,則a、b之間滿足的關(guān)系式為( ?。?br /> A. B.
C. D.
5.如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B在x軸正半軸上,點(diǎn)D在第三象限的雙曲線上,過(guò)點(diǎn)C作CE∥x軸交雙曲線于點(diǎn)E,連接BE,則△BCE的面積為( ?。?br />
A.5 B.6 C.7 D.8
6.如圖,兩個(gè)一次函數(shù)圖象的交點(diǎn)坐標(biāo)為,則關(guān)于x,y的方程組的解為( )

A. B. C. D.
7.如圖,已知矩形ABCD中,BC=2AB,點(diǎn)E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為( ?。?br />
A. B. C. D.
8.九年級(jí)(2)班同學(xué)根據(jù)興趣分成五個(gè)小組,各小組人數(shù)分布如圖所示,則在扇形圖中第一小組對(duì)應(yīng)的圓心角度數(shù)是( )

A. B. C. D.
9.在實(shí)數(shù)π,0,,﹣4中,最大的是( ?。?br /> A.π B.0 C. D.﹣4
10.已知拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),頂點(diǎn)坐標(biāo)為(1,n),則下列結(jié)論:①4a+2b<0; ②﹣1≤a≤; ③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為( ?。?br /> A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
二、填空題(共7小題,每小題3分,滿分21分)
11.當(dāng)﹣4≤x≤2時(shí),函數(shù)y=﹣(x+3)2+2的取值范圍為_(kāi)____________.
12.如圖,這是由邊長(zhǎng)為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個(gè)圖形的周長(zhǎng)是___.

13.若分式的值為0,則a的值是 .
14.如圖所示的網(wǎng)格是正方形網(wǎng)格,點(diǎn)P到射線OA的距離為m,點(diǎn)P到射線OB的距離為n,則m __________ n.(填“>”,“=”或“
【解析】
由圖像可知在射線上有一個(gè)特殊點(diǎn),點(diǎn)到射線的距離,點(diǎn)到射線的距離,于是可知 ,利用銳角三角函數(shù) ,即可判斷出
【詳解】
由題意可知:找到特殊點(diǎn),如圖所示:

設(shè)點(diǎn)到射線的距離 ,點(diǎn)到射線的距離
由圖可知,
,
,


【點(diǎn)睛】
本題考查了點(diǎn)到線的距離,熟知在直角三角形中利用三角函數(shù)來(lái)解角和邊的關(guān)系是解題關(guān)鍵.
15、圓形
【解析】
根據(jù)竹籬笆的長(zhǎng)度可知所圍成的正方形的邊長(zhǎng),進(jìn)而可計(jì)算出所圍成的正方形的面積;根據(jù)圓的周長(zhǎng)公式,可知所圍成的圓的半徑,進(jìn)而將圓的面積計(jì)算出來(lái),兩者進(jìn)行比較.
【詳解】
圍成的圓形場(chǎng)地的面積較大.理由如下:
設(shè)正方形的邊長(zhǎng)為a,圓的半徑為R,
∵竹籬笆的長(zhǎng)度為48米,
∴4a=48,則a=1.即所圍成的正方形的邊長(zhǎng)為1;2π×R=48,
∴R=,即所圍成的圓的半徑為,
∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,
∵144<,
∴圍成的圓形場(chǎng)地的面積較大.
故答案為:圓形.
【點(diǎn)睛】
此題主要考查實(shí)數(shù)的大小的比較在實(shí)際生活中的應(yīng)用,所以學(xué)生在學(xué)這一部分時(shí)一定要聯(lián)系實(shí)際,不能死學(xué).
16、.
【解析】
用被抽查的100名學(xué)生中參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生除以抽查的學(xué)生總?cè)藬?shù),即可得解.
【詳解】
由頻數(shù)分布直方圖知,2~2.5小時(shí)的人數(shù)為100﹣(8+24+30+10)=28,則該校雙休日參加社會(huì)實(shí)踐活動(dòng)時(shí)間在2~2.5小時(shí)之間的學(xué)生數(shù)大約是全體學(xué)生數(shù)的百分比為100%=28%.
故答案為:28%.
【點(diǎn)睛】
本題考查了頻數(shù)分布直方圖以及用樣本估計(jì)總體,利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問(wèn)題.一般來(lái)說(shuō),用樣本去估計(jì)總體時(shí),樣本越具有代表性、容量越大,這時(shí)對(duì)總體的估計(jì)也就越精確.
17、8π
【解析】
圓錐的側(cè)面積就等于母線長(zhǎng)乘底面周長(zhǎng)的一半.依此公式計(jì)算即可.
【詳解】
側(cè)面積=4×4π÷2=8π.
故答案為8π.
【點(diǎn)睛】
本題主要考查了圓錐的計(jì)算,正確理解圓錐的側(cè)面積的計(jì)算可以轉(zhuǎn)化為扇形的面積的計(jì)算,理解圓錐與展開(kāi)圖之間的關(guān)系.

三、解答題(共7小題,滿分69分)
18、(1)5+;(2)
【解析】
試題分析:(1)先分別進(jìn)行絕對(duì)值化簡(jiǎn),0指數(shù)冪、負(fù)指數(shù)冪的計(jì)算,特殊三角函數(shù)值、二次根式的化簡(jiǎn),然后再按運(yùn)算順序進(jìn)行計(jì)算即可;
(2)括號(hào)內(nèi)先通分進(jìn)行加法運(yùn)算,然后再進(jìn)行分式除法運(yùn)算,最后代入數(shù)值進(jìn)行計(jì)算即可.
試題解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;
(2)原式==,
當(dāng)a=時(shí),原式==.
19、 (1)見(jiàn)解析;(2)m=2
【解析】
(1)根據(jù)一元二次方程根的判別式進(jìn)行分析解答即可;
(2)用“因式分解法”解原方程,求得其兩根,再結(jié)合已知條件分析解答即可.
【詳解】
(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
∴方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)關(guān)于x的方程:x2﹣6mx+9m2﹣9=1可化為:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
解得:x=2m+2和x=2m-2,
∵2m+2>2m﹣2,x1>x2,
∴x1=2m+2,x2=2m﹣2,
又∵x1=2x2,
∴2m+2=2(2m﹣2)解得:m=2.
【點(diǎn)睛】
(1)熟知“一元二次方程根的判別式:在一元二次方程中,當(dāng)時(shí),原方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)時(shí),原方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)時(shí),原方程沒(méi)有實(shí)數(shù)根”是解答第1小題的關(guān)鍵;(2)能用“因式分解法”求得關(guān)于x的方程x2﹣6mx+9m2﹣9=1的兩個(gè)根是解答第2小題的關(guān)鍵.
20、R= 或R=
【解析】
解:當(dāng)圓與斜邊相切時(shí),則R=,即圓與斜邊有且只有一個(gè)公共點(diǎn),當(dāng)R=時(shí),點(diǎn)A在圓內(nèi),點(diǎn)B在圓外或圓上,則圓與斜邊有且只有一個(gè)公共點(diǎn).
考點(diǎn):圓與直線的位置關(guān)系.
21、(1)C;(2)100
【解析】
(1)根據(jù)中位數(shù)的定義即可作出判斷;
(2)先算出樣本中C等級(jí)的百分比,再用總數(shù)乘以400即可.
【詳解】
解:(1)由直方圖中可知數(shù)據(jù)總數(shù)為40個(gè),第20,21個(gè)數(shù)據(jù)的平均數(shù)為本組數(shù)據(jù)的中位數(shù),第20,21個(gè)數(shù)據(jù)的等級(jí)都是C等級(jí),故本次調(diào)查中,男生的跳繩成績(jī)的中位數(shù)在C等級(jí);
故答案為C.
(2)400 =100(人)
答:估計(jì)該校九年級(jí)男生跳繩成績(jī)是等級(jí)的人數(shù)有100人.
【點(diǎn)睛】
本題考查了中位數(shù)的求法和用樣本數(shù)估計(jì)總體數(shù)據(jù),理解相關(guān)知識(shí)是解題的關(guān)鍵.
22、(1)圖見(jiàn)解析;(2)126°;(3)1.
【解析】
(1)利用被調(diào)查學(xué)生的人數(shù)=了解程度達(dá)到B等的學(xué)生數(shù)÷所占比例,即可得出被調(diào)查學(xué)生的人數(shù),由了解程度達(dá)到C等占到的比例可求出了解程度達(dá)到C等的學(xué)生數(shù),再利用了解程度達(dá)到A等的學(xué)生數(shù)=被調(diào)查學(xué)生的人數(shù)-了解程度達(dá)到B等的學(xué)生數(shù)-了解程度達(dá)到C等的學(xué)生數(shù)-了解程度達(dá)到D等的學(xué)生數(shù)可求出了解程度達(dá)到A等的學(xué)生數(shù),依此數(shù)據(jù)即可將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)根據(jù)A等對(duì)應(yīng)的扇形圓心角的度數(shù)=了解程度達(dá)到A等的學(xué)生數(shù)÷被調(diào)查學(xué)生的人數(shù)×360°,即可求出結(jié)論;
(3)利用該?,F(xiàn)有學(xué)生數(shù)×了解程度達(dá)到A等的學(xué)生所占比例,即可得出結(jié)論.
【詳解】
(1)48÷40%=120(人),
120×15%=18(人),
120-48-18-12=42(人).
將條形統(tǒng)計(jì)圖補(bǔ)充完整,如圖所示.

(2)42÷120×100%×360°=126°.
答:扇形統(tǒng)計(jì)圖中的A等對(duì)應(yīng)的扇形圓心角為126°.
(3)1500×=1(人).
答:該校學(xué)生對(duì)政策內(nèi)容了解程度達(dá)到A等的學(xué)生有1人.
【點(diǎn)睛】
本題考查了條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖以及用樣本估計(jì)總體,觀察條形統(tǒng)計(jì)圖及扇形統(tǒng)計(jì)圖,找出各數(shù)據(jù),再利用各數(shù)量間的關(guān)系列式計(jì)算是解題的關(guān)鍵.
23、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.
【解析】
(2)由直線y=﹣x+3分別與x軸、y交于點(diǎn)B、C求得點(diǎn)B、C的坐標(biāo),再代入y=x2+bx+c求得b、c的值,即可求得拋物線的解析式;(2)①先求得拋物線的頂點(diǎn)坐標(biāo)為D(2,﹣2),當(dāng)直線l2經(jīng)過(guò)點(diǎn)D時(shí)求得m=﹣2;當(dāng)直線l2經(jīng)過(guò)點(diǎn)C時(shí)求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當(dāng)直線l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間和當(dāng)直線l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間兩種情況求m的值即可.
【詳解】
(2)在y=﹣x+3中,令x=2,則y=3;
令y=2,則x=3;得B(3,2),C(2,3),
將點(diǎn)B(3,2),C(2,3)的坐標(biāo)代入y=x2+bx+c
得:,解得
∴y=x2﹣4x+3;
(2)∵直線l2平行于x軸,
∴y2=y2=y3=m,
①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,
∴頂點(diǎn)為D(2,﹣2),
當(dāng)直線l2經(jīng)過(guò)點(diǎn)D時(shí),m=﹣2;
當(dāng)直線l2經(jīng)過(guò)點(diǎn)C時(shí),m=3
∵x2>x2>2,
∴﹣2<y3<3,
即﹣2<﹣x3+3<3,
得2<x3<4,
②如圖①,當(dāng)直線l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間,
若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),則得PQ=QN.
∵x2>x2>2,
∴x3﹣x2=x2﹣x2,
即 x3=2x2﹣x2,
∵l2∥x軸,即PQ∥x軸,
∴點(diǎn)P、Q關(guān)于拋物線的對(duì)稱軸l2對(duì)稱,
又拋物線的對(duì)稱軸l2為x=2,
∴2﹣x2=x2﹣2,
即x2=4﹣x2,
∴x3=3x2﹣4,
將點(diǎn)Q(x2,y2)的坐標(biāo)代入y=x2﹣4x+3
得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
∴x22﹣4x2+3=﹣x3+3,
∴x22﹣4x2=﹣(3x2﹣4)
即 x22﹣x2﹣4=2,解得x2=,(負(fù)值已舍去),
∴m=()2﹣4×+3=
如圖②,當(dāng)直線l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間,

若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn),則得PN=NQ.
由上可得點(diǎn)P、Q關(guān)于直線l2對(duì)稱,
∴點(diǎn)N在拋物線的對(duì)稱軸l2:x=2,
又點(diǎn)N在直線y=﹣x+3上,
∴y3=﹣2+3=2,即m=2.
故m的值為或2.
【點(diǎn)睛】
本題是二次函數(shù)綜合題,
本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、函數(shù)圖象的交點(diǎn)、線段的中點(diǎn)及分類討論思想等知識(shí).在(2)中注意待定系數(shù)法的應(yīng)用;在(2)①注意利用數(shù)形結(jié)合思想;在(2)②注意分情況討論.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.
24、見(jiàn)解析
【解析】
試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;
應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.
試題解析:
探究:∵四邊形ABCD、四邊形CEFG均為菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,

∴△BCE≌△DCG(SAS),
∴BE=DG.
應(yīng)用:∵四邊形ABCD為菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.

相關(guān)試卷

2024年江蘇省徐州市樹(shù)人初級(jí)中學(xué) 九年級(jí)中考數(shù)學(xué)二模試卷:

這是一份2024年江蘇省徐州市樹(shù)人初級(jí)中學(xué) 九年級(jí)中考數(shù)學(xué)二模試卷,共6頁(yè)。

2023年江蘇省徐州市鼓樓區(qū)樹(shù)人初級(jí)中學(xué)中考數(shù)學(xué)三模試卷(含解析):

這是一份2023年江蘇省徐州市鼓樓區(qū)樹(shù)人初級(jí)中學(xué)中考數(shù)學(xué)三模試卷(含解析),共24頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2023年江蘇省徐州市鼓樓區(qū)樹(shù)人初級(jí)中學(xué)中考數(shù)學(xué)二模試卷(含解析):

這是一份2023年江蘇省徐州市鼓樓區(qū)樹(shù)人初級(jí)中學(xué)中考數(shù)學(xué)二模試卷(含解析),共26頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

2023年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考第二次模擬測(cè)試數(shù)學(xué)試題

2023年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考第二次模擬測(cè)試數(shù)學(xué)試題

2023年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考中考二模數(shù)學(xué)試題

2023年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考中考二模數(shù)學(xué)試題

2021-2022學(xué)年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考數(shù)學(xué)模試卷含解析

2021-2022學(xué)年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考數(shù)學(xué)模試卷含解析

2022年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考二模數(shù)學(xué)試題(word版含答案)

2022年江蘇省徐州市樹(shù)人初級(jí)中學(xué)中考二模數(shù)學(xué)試題(word版含答案)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部