
1.在下列各式中,最簡(jiǎn)二次根式是( )
A.B.C.D.
2.下列計(jì)算正確的是( )
A.B.
C.D.
3.以下列各組數(shù)為邊長(zhǎng),能構(gòu)成直角三角形的是( )
A.5,12,13B.C.9,16,25D.
4.如圖,在正方形ABCD的外側(cè),作等邊三角形CDE,連接AE.則∠DAE的度數(shù)是( )
A.15°B.20°C.12.5°D.10°
5.如圖,在△ABC中,∠ABC=90°,分別以AB、BC、AC為邊向外作正方形,它們的面積分別是225,400,S.則S是( )
A.175B.600C.25D.625
6.若直線l的解析式為y=﹣x+1,則下列說(shuō)法正確的是( )
A.直線l與y軸交于點(diǎn)(0,﹣1)
B.直線l不經(jīng)過(guò)第四象限
C.直線l與x軸交于點(diǎn)(1,0)
D.y隨x的增大而增大
7.若一次函數(shù)y=kx+b(k<0)的圖象上有兩點(diǎn)(﹣3,y1),(5,y2),則y1與y2的大小關(guān)系是( )
A.y1<y2B.y1=y(tǒng)2C.y1>y2D.不能確定
8.某校為選拔一名運(yùn)動(dòng)員參加市運(yùn)動(dòng)會(huì)100米短跑比賽,對(duì)甲、乙兩名運(yùn)動(dòng)員都進(jìn)行了5次測(cè)試.他們成績(jī)的平均數(shù)均為12秒,其中甲測(cè)試成績(jī)的方差S甲2=0.8.乙的5次測(cè)試成績(jī)分別為:13,12.5,11,11.5,12(單位:秒).則最適合參加本次比賽的運(yùn)動(dòng)員是( )
A.甲B.乙
C.甲、乙都一樣D.無(wú)法選擇
9.當(dāng)1≤x≤10時(shí),一次函數(shù)y=3x+b的最小值為18,則b=( )
A.10B.15C.20D.25
10.如圖,在菱形ABCD中,AC=12,BD=16,點(diǎn)M,N分別位于BC,CD上,且CM=DN,點(diǎn)P在對(duì)角線BD上運(yùn)動(dòng).則MP+NP的最小值是( )
A.6B.8C.10D.12
二、填空題(本題共6小題,每小題3分,共18分)
11.若二次根式有意義,則x的取值范圍是 .
12.某公司招聘職員,競(jìng)聘者需參加計(jì)算機(jī)、語(yǔ)言表達(dá)和寫(xiě)作能力三項(xiàng)測(cè)試.競(jìng)聘成績(jī)按照如下標(biāo)準(zhǔn)計(jì)算:計(jì)算機(jī)成績(jī)占50%,語(yǔ)言表達(dá)成績(jī)占30%,寫(xiě)作能力成績(jī)占20%.李麗的三項(xiàng)成績(jī)依次是70分,90分,80分,則李麗的競(jìng)聘成績(jī)是 分.
13.若一個(gè)直角三角形的兩邊長(zhǎng)分別是4cm,3m,則第三條邊長(zhǎng)是 cm.
14.若直線y=(m+5)x+(m﹣1)經(jīng)過(guò)第一、三、四象限,則常數(shù)m的取值范圍是 .
15.如圖,直線y=kx+b(k≠0)和直線y=mx+n(m≠0),分別與x軸交于(﹣4,0),(2,0)兩點(diǎn),則關(guān)于x的不等式組的解集是 .
16.如圖,在Rt△ABC中,∠ACB=90°,∠A=3∠B,AB=20cm,點(diǎn)D是AB中點(diǎn),點(diǎn)M從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)到點(diǎn)B,點(diǎn)P始終是線段CM的中點(diǎn).對(duì)于下列結(jié)論:①CD=10cm;②∠CDA=60°;③線段CM長(zhǎng)度的最小值是5cm;④點(diǎn)P運(yùn)動(dòng)路徑的長(zhǎng)度是10cm.其中正確的結(jié)論是 (寫(xiě)出所有正確結(jié)論的序號(hào)).
三、解答題(本題共9小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.)
17.計(jì)算:.
18.如圖,E,F(xiàn)分別是平行四邊形ABCD的邊AD,BC上的點(diǎn),且AE=CF.求證:四邊形EBFD是平行四邊形.
19.如圖,在四邊形ABCD中,∠B=90°,AB=1,BC=2,CD=2,AD=3,求四邊形ABCD的面積.
20.為了解初二某班學(xué)生使用共享單車(chē)次數(shù)的情況,某數(shù)學(xué)小組隨機(jī)采訪該班的10位同學(xué),得到這10位同學(xué)一周內(nèi)使用共享單車(chē)的次數(shù),統(tǒng)計(jì)如下:
(1)這10位同學(xué)一周內(nèi)使用共享單車(chē)次數(shù)的眾數(shù)是 ,中位數(shù)是 ;
(2)求這10位同學(xué)一周內(nèi)使用共享單車(chē)次數(shù)的平均數(shù).
21.如圖,四邊形ABCD是矩形,AD=6,CD=8.
(1)尺規(guī)作圖:作∠DAC的平分線AE,與CD交于點(diǎn)E(保留作圖痕跡,不寫(xiě)作法);
(2)求點(diǎn)E到線段AC的距離.
22.某校足球隊(duì)計(jì)劃從商家購(gòu)進(jìn)A、B兩種品牌的足球,A種足球的單價(jià)比B種足球的單價(jià)低30元,購(gòu)進(jìn)5個(gè)A種足球的費(fèi)用等于3個(gè)B種足球的費(fèi)用.現(xiàn)計(jì)劃購(gòu)進(jìn)兩種品牌的足球共50個(gè),其中A種足球數(shù)量不超過(guò)B種足球數(shù)量的9倍.
(1)求A、B兩種品牌的足球單價(jià)各是多少元?
(2)設(shè)購(gòu)買(mǎi)A種足球m個(gè)(m≥1),購(gòu)買(mǎi)兩種品牌足球的總費(fèi)用為w元,求w關(guān)于m的函數(shù)關(guān)系式,并求出最低總費(fèi)用.
23.在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x+4的圖象與x軸,y軸分別交于點(diǎn)B,A,以AB為邊在第一象限內(nèi)作等腰直角△ABC,且∠ABC=90°,過(guò)C作CD⊥x軸于點(diǎn)D.
(1)如圖1,求A,B,C三點(diǎn)的坐標(biāo);
(2)如圖2,若點(diǎn)E,F(xiàn)分別是OB,AB的中點(diǎn),連接EF,CF.判斷四邊形FEDC的形狀,并說(shuō)明理由.
24.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸的正半軸上,點(diǎn)B在x軸的正半軸上,OA=OB=10.
(1)求直線AB的解析式;
(2)若點(diǎn)P是直線AB上的動(dòng)點(diǎn),當(dāng)S△OBP=S△OAP時(shí),求點(diǎn)P的坐標(biāo);
(3)將直線AB向下平移10個(gè)單位長(zhǎng)度得到直線l,點(diǎn)M,N是直線l上的動(dòng)點(diǎn)(M,N的橫坐標(biāo)分別是xM,xN,且xM<xN),MN=4,求四邊形ABNM的周長(zhǎng)的最小值,并說(shuō)明理由.
25.已知:四邊形ABCD是正方形,AB=20,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,AD,DC上.
(1)如圖1,若∠EDF=45°,AE=CF,求∠DFC的度數(shù);
(2)如圖2,若∠EDF=45°,點(diǎn)E,F(xiàn)分別是AB,BC上的動(dòng)點(diǎn),求證:△EBF的周長(zhǎng)是定值;
(3)如圖3,若GD=BF=5,GF和EH交于點(diǎn)O,且∠EOF=45°,求EH的長(zhǎng)度.
使用次數(shù)
1
4
8
12
16
人數(shù)
2
2
4
1
1
這是一份廣東省廣州市越秀區(qū)2020-2021學(xué)年八年級(jí)上學(xué)期期末考試數(shù)學(xué)試題(word版,無(wú)答案),共5頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2020-2021學(xué)年廣東省廣州市越秀區(qū)七年級(jí)(下)期末數(shù)學(xué)試卷(word版無(wú)答案),共5頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份2020-2021學(xué)年廣東省廣州市八年級(jí)(上)期中數(shù)學(xué)試卷(Word版,無(wú)答案),共6頁(yè)。試卷主要包含了選擇題,填空題,解答題.等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功