[最新考綱] 1.了解橢圓的實(shí)際背景,了解橢圓在刻畫現(xiàn)實(shí)世界和解決實(shí)際問(wèn)題中的作用.2.掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì)(范圍、對(duì)稱性、頂點(diǎn)、離心率).3.理解數(shù)形結(jié)合思想.4.了解橢圓的簡(jiǎn)單應(yīng)用.


1.橢圓的定義
(1)平面內(nèi)到兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)(大于|F1F2|)的點(diǎn)的集合叫做橢圓.這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距.
(2)集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a,c為常數(shù)且a>0,c>0.
①當(dāng)2a>|F1F2|時(shí),M點(diǎn)的軌跡為橢圓;
②當(dāng)2a=|F1F2|時(shí),M點(diǎn)的軌跡為線段F1F2;
③當(dāng)2ab>0)
+=1(a>b>0)
圖形



質(zhì)
范圍
-a≤x≤a
-b≤y≤b
-b≤x≤b
-a≤y≤a
對(duì)稱性
對(duì)稱軸:坐標(biāo)軸;對(duì)稱中心:原點(diǎn)
頂點(diǎn)
A1(-a,0),A2(a,0),
B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a),
B1(-b,0),B2(b,0)
離心率
e=,且e∈(0,1)
a,b,c的關(guān)系
c2=a2-b2


1.點(diǎn)P(x0,y0)和橢圓的位置關(guān)系
(1)點(diǎn)P(x0,y0)在橢圓內(nèi)?+<1.
(2)點(diǎn)P(x0,y0)在橢圓上?+=1.
(3)點(diǎn)P(x0,y0)在橢圓外?+>1.
2.焦點(diǎn)三角形
如圖,橢圓上的點(diǎn)P(x0,y0)與兩焦點(diǎn)構(gòu)成的△PF1F2叫做焦點(diǎn)三角形.設(shè)r1=|PF1|,r2=|PF2|,∠F1PF2=θ,△PF1F2的面積為S,則在橢圓+=1(a>b>0)中:

(1)當(dāng)r1=r2時(shí),即點(diǎn)P的位置為短軸端點(diǎn)時(shí),θ最大;
(2)S=b2tan =c|y0|,當(dāng)|y0|=b時(shí),即點(diǎn)P的位置為短軸端點(diǎn)時(shí),S取最大值,最大值為bc.
(3)a-c≤|PF1|≤a+c.
(4)|PF1|=a+ex0,|PF2|=a-ex0.
3.橢圓的一個(gè)焦點(diǎn)、中心和短軸的一個(gè)端點(diǎn)構(gòu)成直角三角形,其中a是斜邊長(zhǎng),a2=b2+c2.
4.已知過(guò)焦點(diǎn)F1的弦AB,則△ABF2的周長(zhǎng)為4a.
5.橢圓中點(diǎn)弦的斜率公式
若M(x0,y0)是橢圓+=1(a>b>0)的弦AB(AB不平行y軸)的中點(diǎn),則有kAB·kOM=-,即kAB=-.
6.弦長(zhǎng)公式:直線與圓錐曲線相交所得的弦長(zhǎng)
|AB|=|x1-x2|

=|y1-y2|=(k為直線的斜率).

一、思考辨析(正確的打“√”,錯(cuò)誤的打“×”)
(1)平面內(nèi)到兩個(gè)定點(diǎn)F1,F(xiàn)2的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓.(  )
(2)橢圓上一點(diǎn)P與兩焦點(diǎn)F1,F(xiàn)2構(gòu)成△PF1F2的周長(zhǎng)為2a+2c(其中a為橢圓的長(zhǎng)半軸長(zhǎng),c為橢圓的半焦距).(  )
(3)橢圓的離心率e越大,橢圓就越圓.(  )
(4)關(guān)于x,y的方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲線是橢圓.(  )
[答案] (1)× (2)√ (3)× (4)√
二、教材改編
1.若F1(-3,0),F(xiàn)2(3,0),點(diǎn)P到F1,F(xiàn)2距離之和為10,則P點(diǎn)的軌跡方程是(  )
A.+=1    B.+=1
C.+=1 D.+=1或+=1
A [設(shè)點(diǎn)P的坐標(biāo)為(x,y),因?yàn)閨PF1|+|PF2|=10>|F1F2|=6,所以點(diǎn)P的軌跡是以F1,F(xiàn)2為焦點(diǎn)的橢圓,其中a=5,c=3,b==4,故點(diǎn)P的軌跡方程為+=1.故選A.]
2.設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,則橢圓的離心率是(  )
A. B.
C.2- D.-1
D [法一:設(shè)橢圓方程為+=1(a>b>0),依題意,顯然有|PF2|=|F1F2|,則=2c,即=2c,即e2+2e-1=0,又00).因?yàn)闄E圓的一個(gè)焦點(diǎn)為F(1,0),離心率e=,所以解得故橢圓的標(biāo)準(zhǔn)方程為+=1.]
第1課時(shí) 橢圓及其性質(zhì)

考點(diǎn)1 橢圓的定義及應(yīng)用
 橢圓定義的應(yīng)用主要有兩個(gè)方面
一是判定平面內(nèi)動(dòng)點(diǎn)的軌跡是否為橢圓;二是利用定義求焦點(diǎn)三角形的周長(zhǎng)、面積、弦長(zhǎng)、最值和離心率等.
 (1)如圖所示,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是(  )
A.橢圓        B.雙曲線
C.拋物線 D.圓
(2)F1,F(xiàn)2是橢圓+=1的兩個(gè)焦點(diǎn),A為橢圓上一點(diǎn),且∠AF1F2=45°,則△AF1F2的面積為(  )
A.7  B.
C.  D.
(1)A (2)C [(1)由題意可知,CD是線段MF的垂直平分線,
∴|MP|=|PF|,
∴|PF|+|PO|
=|PM|+|PO|=|MO|(定值).
又|MO|>|FO|,
∴點(diǎn)P的軌跡是以F,O為焦點(diǎn)的橢圓,故選A.
(2)由題意得a=3,b=,c=,
∴|F1F2|=2,|AF1|+|AF2|=6.
∵|AF2|2=|AF1|2+|F1F2|2-2|AF1|·|F1F2|cos 45°=|AF1|2-4|AF1|+8,
∴(6-|AF1|)2=|AF1|2-4|AF1|+8.
∴|AF1|=,
∴S△AF1F2=××2×=.]
 本例(1)應(yīng)用線段中垂線的性質(zhì)實(shí)現(xiàn)了“|PF|+|PO|”向定值的轉(zhuǎn)化;本例(2)把余弦定理與橢圓的定義交匯在一起,借助方程的思想解出|AF1|,從而求得△AF1F2的面積.
[教師備選例題]
設(shè)F1,F(xiàn)2分別是橢圓+=1的左、右焦點(diǎn),P為橢圓上任意一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則|PM|-|PF1|的最小值為________.
-5 [由橢圓的方程可知F2(3,0),由橢圓的定義可得|PF1|=2a-|PF2|.∴|PM|-|PF1|=|PM|-(2a-|PF2|)=|PM|+|PF2|-2a≥|MF2|-2a,
當(dāng)且僅當(dāng)M,P,F(xiàn)2三點(diǎn)共線時(shí)取得等號(hào),
又|MF2|==5,2a=10,
∴|PM|-|PF1|≥5-10=-5,
即|PM|-|PF1|的最小值為-5.]
 已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上的一點(diǎn),且PF1⊥PF2,若△PF1F2的面積為9,則b=________.
3 [設(shè)|PF1|=r1,|PF2|=r2,
則所以2r1r2=(r1+r2)2-(r+r)=4a2-4c2=4b2,所以S△PF1F2=r1r2=b2=9,所以b=3.]
考點(diǎn)2 橢圓的標(biāo)準(zhǔn)方程
 定義法
 先根據(jù)題目所給條件確定動(dòng)點(diǎn)的軌跡滿足橢圓的定義,并確定a2,b2的值,再結(jié)合焦點(diǎn)位置可寫出橢圓方程.特別地,利用定義法求橢圓方程要注意條件2a>|F1F2|.
 1.在△ABC中,A(-4,0),B(4,0),△ABC的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是(  )
A.+=1(y≠0) B.+=1(y≠0)
C.+=1(y≠0) D.+=1(y≠0)
A [由|AC|+|BC|=18-8=10>8知,頂點(diǎn)C的軌跡是以A,B為焦點(diǎn)的橢圓(A,B,C不共線).設(shè)其方程為+=1(a>b>0),則a=5,c=4,從而b=3.
由A,B,C不共線知y≠0.
故頂點(diǎn)C的軌跡方程是+=1(y≠0).]
2.已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,動(dòng)圓在圓C1內(nèi)部且和圓C1相內(nèi)切,和圓C2相外切,則動(dòng)圓圓心M的軌跡方程為(  )
A.-=1    B.+=1
C.-=1 D.+=1
D [設(shè)圓M的半徑為r,則|MC1|+|MC2|=(13-r)+(3+r)=16,又|C1C2|=8<16,∴動(dòng)圓圓心M的軌跡是以C1,C2為焦點(diǎn)的橢圓,且2a=16,2c=8,則a=8,c=4,∴b2=48,故所求的軌跡方程為+=1.]
 利用定義法求軌跡方程時(shí),注意檢驗(yàn)所求軌跡是否是完整的曲線,倘若不是完整的曲線,應(yīng)對(duì)曲線中的變量x或y進(jìn)行限制.
 待定系數(shù)法
 利用待定系數(shù)法要先定形(焦點(diǎn)位置),再定量,即首先確定焦點(diǎn)所在位置,然后根據(jù)條件建立關(guān)于a,b的方程組.如果焦點(diǎn)位置不確定,可設(shè)橢圓方程為mx2+ny2=1(m>0,n>0,m≠n)的形式.
 1.已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且經(jīng)
過(guò)兩點(diǎn),(,),則橢圓方程為________.
+=1 [設(shè)橢圓方程為mx2+ny2=1(m,n>0,m≠n).
由解得m=,n=.
∴橢圓方程為+=1.]
2.過(guò)點(diǎn)(,-),且與橢圓+=1有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程為________.
+=1 [法一:橢圓+=1的焦點(diǎn)為(0,-4),(0,4),即c=4.
由橢圓的定義知,
2a=+,
解得a=2.
由c2=a2-b2可得b2=4,
∴所求橢圓的標(biāo)準(zhǔn)方程為+=1.
法二:∵所求橢圓與橢圓+=1的焦點(diǎn)相同,
∴其焦點(diǎn)在y軸上,
且c2=25-9=16.
設(shè)它的標(biāo)準(zhǔn)方程為+=1(a>b>0).
∵c2=16,且c2=a2-b2,
故a2-b2=16.①
又點(diǎn)(,-)在所求橢圓上,
∴+=1,
則+=1.②
由①②得b2=4,a2=20,
∴所求橢圓的標(biāo)準(zhǔn)方程為+=1.]
3.設(shè)F1,F(xiàn)2分別是橢圓E:x2+=1(0<b<1)的左、右焦點(diǎn),過(guò)點(diǎn)F1的直線交橢圓E于A,B兩點(diǎn).若|AF1|=3|F1B|,AF2⊥x軸,則橢圓E的方程為________.
x2+y2=1 [不妨設(shè)點(diǎn)A在第一象限,如圖所示.
∵AF2⊥x軸,∴A(c,b2)(其中c2=1-b2,0<b<1,c>0).
又∵|AF1|=3|F1B|,
∴由=3得B,
代入x2+=1得+=1.
又c2=1-b2,∴b2=.
故橢圓E的方程為x2+y2=1.]

 (1)已知橢圓上兩點(diǎn),常設(shè)方程為mx2+ny2=1(m>0,
n>0,m≠n);(2)橢圓的通徑(過(guò)焦點(diǎn)且與長(zhǎng)軸垂直的弦)長(zhǎng)為.
考點(diǎn)3 橢圓的幾何性質(zhì)
 橢圓的長(zhǎng)軸、短軸、焦距
 求解與橢圓幾何性質(zhì)有關(guān)的問(wèn)題,如:頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的內(nèi)在聯(lián)系,同時(shí)要結(jié)合圖形進(jìn)行分析.
 (1)已知橢圓+=1的長(zhǎng)軸在x軸上,焦距為4,則m等于(  )
A.8 B.7
C.6 D.5
(2)已知橢圓C:+=1(a>b>0),若長(zhǎng)軸長(zhǎng)為6,且兩焦點(diǎn)恰好將長(zhǎng)軸三等分,則此橢圓的標(biāo)準(zhǔn)方程為________.
(1)A (2)+=1 [(1)因?yàn)闄E圓+=1的長(zhǎng)軸在x軸上,所以 解得60)的左、右兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P使得PF1⊥PF2,則該橢圓的離心率的取值范圍是(  )
A. B.
C. D.
B [∵F1,F(xiàn)2是橢圓+=1(a>b>0)的左、右兩個(gè)焦點(diǎn),∴0c,所以b2>c2,所以a2-c2>c2,
所以2e2

英語(yǔ)朗讀寶
相關(guān)資料 更多
資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部