
1.已知集合A={1,2,3,4,5},B={x|x?12∈Z,x∈A},則集合B的真子集個數(shù)為
A. 3B. 5C. 7D. 15
2.若θ為第二象限角,則
A. cs 2θ>0B. cs 2θ0D. sin 2θ0,使得a=λb”是“a?b>0”的
A. 充分不必要條件B. 必要不充分條件
C. 充分必要條件D. 既不充分也不必要條件
4.在等比數(shù)列{an}中,若a3a5=16,a2+a4=5,則a2=
A. 1B. 9C. 1或9D. ?1或9
5.已知隨機變量X的分布列如下:
若E(X)=4,則a=
A. 118B. 112C. 19D. 16
6.若函數(shù)f(x)=sinx+acsx的圖象關(guān)于直線x=?π3對稱,則函數(shù)g(x)=asinx+csx圖象的一條對稱軸為
A. x=π6B. x=2π3C. x=5π6D. x=5π3
7.已知雙曲線C1:x2a2?y2b2=1(a>0,b>0)的漸近線與橢圓C2:x24+y2=1在第一象限內(nèi)的交點為P,F(xiàn)1、F2是橢圓C2的左、右焦點,且PF1⊥PF2,則雙曲線C1的離心率為
A. 3 24B. 3 54C. 3D. 2 53
8.已知函數(shù)f(x),g(x)的定義域為R,若函數(shù)f(x)=g(x)+g(2?x),f(x)是奇函數(shù),f(1)= 2.記f(x)的導(dǎo)函數(shù)為f′(x),則f(5)+f(6)+f′(7)=( )
A. ? 2B. 2C. 2 2D. 3 2
二、多選題:本題共3小題,共18分。在每小題給出的選項中,有多項符合題目要求。
9.某班級的一次測驗后,隨機抽取7名同學(xué)的成績作為樣本,這7名同學(xué)的成績分別為80,82,83,84,85,86,88,則
A. 根據(jù)樣本數(shù)據(jù),估計這次考試全班成績的上四分位數(shù)為86
B. 根據(jù)樣本數(shù)據(jù),估計這次考試全班成績的標(biāo)準(zhǔn)差為6
C. 當(dāng)該樣本中加入一個84形成新樣本時,新樣本數(shù)據(jù)的方差小于原樣本數(shù)據(jù)的方差
D. 若該班成績X服從正態(tài)分布N(μ,σ2),用這7名同學(xué)的成績估計總體,則有P(X≥94)=P(X≤74)
10.如圖1,在△ABC中,AC⊥BC,B=π3,AB=8.D,E分別在AB,AC上,且DE=34BC.將△ADE沿DE翻折得到圖2,其中AC⊥CE.記三棱錐A?BCD外接球球心為O1,球O1表面積為S1,三棱錐A?ECD外接球球心為O2,球O2表面積為S2,則在圖2中,下列說法正確的有
A. BD⊥平面ADCB. 直線AB與DE所成角的正切值為 62
C. O1O2//CED. S1+S2=76π
11.已知正數(shù)x,y,z滿足3x=4y=5z,則下列不等關(guān)系正確的有
A. 1x+1z3zC. 3x
這是一份2024屆重慶市南開中學(xué)高三下學(xué)期第七次質(zhì)量檢測-數(shù)學(xué)試卷(含答案),共14頁。
這是一份重慶市南開中學(xué)2025屆高三下學(xué)期3月第七次質(zhì)量檢測數(shù)學(xué)試卷(PDF版附解析),文件包含重慶市南開中學(xué)高2025屆高三第七次質(zhì)量檢測數(shù)學(xué)答案pdf、重慶市南開中學(xué)高2025屆高三第七次質(zhì)量檢測數(shù)學(xué)pdf等2份試卷配套教學(xué)資源,其中試卷共10頁, 歡迎下載使用。
這是一份重慶市第十一中學(xué)校2024屆高三下學(xué)期第七次質(zhì)量檢測數(shù)學(xué)試卷(含答案),共20頁。試卷主要包含了選擇題,多項選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
注冊成功