
(說(shuō)明:本試卷考試時(shí)間為120分鐘,滿分為150分)
一、選擇題(本大題共8小題,每題5分,共40分,每小題的4個(gè)選項(xiàng)中僅有一個(gè)選項(xiàng)是正確的,請(qǐng)將你認(rèn)為正確的答案的代號(hào)涂在答題卡上)
1.設(shè)全集,集合,則圖中陰影部分表示的集合為( )
A. B. C. D.
2.化簡(jiǎn)等于( )
A. B. C.D.
3.已知等差數(shù)列和的前項(xiàng)和分別為、,若,則( )
A. B. C. D.
4.甲、乙、丙、丁、戊共5名同學(xué)參加100米比賽,決出第1名到第5名的名次.比賽結(jié)束后甲說(shuō):“我不是第1名”,乙說(shuō):“我不是第5名”.根據(jù)以上信息,這5人的名次排列情況種數(shù)為( )
A.72 B.78 C.96 D.120
5.已知函數(shù)的部分圖象如下圖所示,則的解析式可能為( )
A. B. C. D.
6.已知函數(shù),若實(shí)數(shù)a,b,c互不相等,且,則的取值范圍是( )
A. B. C. D.
7.已知,,,其中為自然對(duì)數(shù)的底數(shù),則,,的大小關(guān)系為( )
A. B. C. D.
8.將方程的所有正數(shù)解從小到大組成數(shù)列,記,則=( )
A. B. C. D.
二、選擇題(本大題共3小題,每題6分,共18分,每小題的4個(gè)選項(xiàng)中有多個(gè)選項(xiàng)是正確的,少選的按比例給分,有選錯(cuò)的得0分,請(qǐng)將你認(rèn)為正確的答案的代號(hào)涂在答題卡上)
9.記為數(shù)列的前項(xiàng)和,下列說(shuō)法正確的是( )
A.若對(duì),,有,則數(shù)列一定是等差數(shù)列
B.若對(duì),,有,則數(shù)列一定是等比數(shù)列
C.已知,則一定是等差數(shù)列
D.已知,則一定是等比數(shù)列
10.已知 △ABC 的內(nèi)角 所對(duì)的邊分別為 , 下列四個(gè)命題中, 正確的命題是( )
A.在△ABC中,若sin A>sin B,則A>B
B.若,則是等腰三角形
C.若在線段 AB 上,且,則△ABC 的面積為8
D.若 ,動(dòng)點(diǎn)在△ABC 所在平面內(nèi)且 ,則 動(dòng)點(diǎn)的軌跡的長(zhǎng)度為
11.已知矩形,,,將沿對(duì)角線進(jìn)行翻折,得到三棱錐,在翻折的過(guò)程中下列結(jié)論成立的是( )
A.三棱錐的體積最大值為 B.三棱錐的外接球體積不變
C.異面直線與所成角的最大值為 D.與平面所成角余弦值最小值為
三、填空題(本大題共3小題,每題5分,共15分,請(qǐng)將答案填寫在答題卷相應(yīng)位置上)
12.盒中有a個(gè)紅球,b個(gè)黑球,今隨機(jī)地從中取出一個(gè),觀察其顏色后放回,并加上同色球c個(gè),再?gòu)暮兄谐槿∫磺?,則第二次抽出的是黑球的概率是 .
13.已知雙曲線的左、右焦點(diǎn)分別為,,點(diǎn)M在雙曲線C的右支上,,若與C的一條漸近線垂直,垂足為N,且,其中O為坐標(biāo)原點(diǎn),則雙曲線C的標(biāo)準(zhǔn)方程為 .
14.已知函數(shù)有三個(gè)不同的零點(diǎn),其中則的值為 .
四、解答題(共77分,請(qǐng)將答案填寫在答題卷相應(yīng)位置上,答錯(cuò)位置不給分,要求要有必要的文字?jǐn)⑹龊屯评碚f(shuō)明)
15.(本小題13分)
設(shè)正項(xiàng)數(shù)列的前n項(xiàng)和為,且,當(dāng)時(shí),.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,且,求數(shù)列的通項(xiàng)公式.
16.(本小題15分)
如圖,、、為圓錐三條母線,.
(1)證明:;
(2)若圓錐側(cè)面積為為底面直徑,,求平面PAB和平面PAC所成角的余弦值.
17.(本小題15分)
已知橢圓:的離心率為,右頂點(diǎn)與的上,下頂點(diǎn)所圍成的三角形面積為.
(1)求的方程;
(2)不過(guò)點(diǎn)的動(dòng)直線與交于,兩點(diǎn),直線與的斜率之積恒為,證明直線過(guò)定點(diǎn),并求出這個(gè)定點(diǎn).
18.(本小題17分)
已知函數(shù).
(1)若的極大值為,求的值;
(2)當(dāng)時(shí),若,使得,求的取值范圍.
19.(本小題17分)
法國(guó)數(shù)學(xué)家費(fèi)馬在給意大利數(shù)學(xué)家托里拆利的一封信中提到“費(fèi)馬點(diǎn)”,即平面內(nèi)到三角形三個(gè)頂點(diǎn)距離之和最小的點(diǎn),托里拆利確定費(fèi)馬點(diǎn)的方法如下:
①當(dāng)?shù)娜齻€(gè)內(nèi)角均小于120°時(shí),滿足∠AOB=∠BOC=∠COA=120°的點(diǎn)O為費(fèi)馬點(diǎn);
②當(dāng)有一個(gè)內(nèi)角大于或等于120°時(shí),最大內(nèi)角的頂點(diǎn)為費(fèi)馬點(diǎn).
請(qǐng)用以上知識(shí)解決下面的問(wèn)題:
已知的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,點(diǎn)M為的費(fèi)馬點(diǎn),且cs2A+cs2B?cs2C=1.
(1)求C;
(2)若c=4,求MA?MB+MB?MC+MC?MA的最大值;
(3)若MA+MB=tMC,求實(shí)數(shù)t的最小值.
這是一份廣東省深圳市紅嶺中學(xué)(紅嶺教育集團(tuán))2025屆高三上學(xué)期第二次統(tǒng)一考試數(shù)學(xué)試卷,共22頁(yè)。試卷主要包含了單選題,多選題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份[數(shù)學(xué)]廣東省深圳市紅嶺中學(xué)(紅嶺教育集團(tuán))2025屆高三上學(xué)期第二次統(tǒng)一考試月考試卷(有答案),共7頁(yè)。
這是一份精品解析:廣東省深圳市福田區(qū)紅嶺中學(xué)2024屆高三上學(xué)期模擬數(shù)學(xué)試題,文件包含精品解析廣東省深圳市福田區(qū)紅嶺中學(xué)2024屆高三上學(xué)期模擬數(shù)學(xué)試題原卷版docx、精品解析廣東省深圳市福田區(qū)紅嶺中學(xué)2024屆高三上學(xué)期模擬數(shù)學(xué)試題解析版docx等2份試卷配套教學(xué)資源,其中試卷共23頁(yè), 歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功