考點(diǎn)01 獨(dú)立性檢驗(yàn)為載體及其應(yīng)用
1.(2024·全國(guó)甲卷·高考真題)某工廠進(jìn)行生產(chǎn)線智能化升級(jí)改造,升級(jí)改造后,從該工廠甲、乙兩個(gè)車間的產(chǎn)品中隨機(jī)抽取150件進(jìn)行檢驗(yàn),數(shù)據(jù)如下:
(1)填寫如下列聯(lián)表:
能否有的把握認(rèn)為甲、乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異?能否有的把握認(rèn)為甲,乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異?
(2)已知升級(jí)改造前該工廠產(chǎn)品的優(yōu)級(jí)品率,設(shè)為升級(jí)改造后抽取的n件產(chǎn)品的優(yōu)級(jí)品率.如果,則認(rèn)為該工廠產(chǎn)品的優(yōu)級(jí)品率提高了,根據(jù)抽取的150件產(chǎn)品的數(shù)據(jù),能否認(rèn)為生產(chǎn)線智能化升級(jí)改造后,該工廠產(chǎn)品的優(yōu)級(jí)品率提高了?()
附:
【答案】(1)答案見詳解
(2)答案見詳解
【分析】(1)根據(jù)題中數(shù)據(jù)完善列聯(lián)表,計(jì)算,并與臨界值對(duì)比分析;
(2)用頻率估計(jì)概率可得,根據(jù)題意計(jì)算,結(jié)合題意分析判斷.
【詳解】(1)根據(jù)題意可得列聯(lián)表:
可得,
因?yàn)椋?br>所以有的把握認(rèn)為甲、乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異,沒有的把握認(rèn)為甲,乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異.
(2)由題意可知:生產(chǎn)線智能化升級(jí)改造后,該工廠產(chǎn)品的優(yōu)級(jí)品的頻率為,
用頻率估計(jì)概率可得,
又因?yàn)樯?jí)改造前該工廠產(chǎn)品的優(yōu)級(jí)品率,
則,
可知,
所以可以認(rèn)為生產(chǎn)線智能化升級(jí)改造后,該工廠產(chǎn)品的優(yōu)級(jí)品率提高了.
2.(2023·全國(guó)甲卷·高考真題)一項(xiàng)試驗(yàn)旨在研究臭氧效應(yīng).實(shí)驗(yàn)方案如下:選40只小白鼠,隨機(jī)地將其中20只分配到實(shí)驗(yàn)組,另外20只分配到對(duì)照組,實(shí)驗(yàn)組的小白鼠飼養(yǎng)在高濃度臭氧環(huán)境,對(duì)照組的小白鼠飼養(yǎng)在正常環(huán)境,一段時(shí)間后統(tǒng)計(jì)每只小白鼠體重的增加量(單位:g).
(1)設(shè)表示指定的兩只小白鼠中分配到對(duì)照組的只數(shù),求的分布列和數(shù)學(xué)期望;
(2)實(shí)驗(yàn)結(jié)果如下:
對(duì)照組的小白鼠體重的增加量從小到大排序?yàn)椋?br>15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1
32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2
實(shí)驗(yàn)組的小白鼠體重的增加量從小到大排序?yàn)椋?br>7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2
19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5
(i)求40只小鼠體重的增加量的中位數(shù)m,再分別統(tǒng)計(jì)兩樣本中小于m與不小于的數(shù)據(jù)的個(gè)數(shù),完成如下列聯(lián)表:
(ii)根據(jù)(i)中的列聯(lián)表,能否有95%的把握認(rèn)為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.
附:
【答案】(1)分布列見解析,
(2)(i);列聯(lián)表見解析,(ii)能
【分析】(1)利用超幾何分布的知識(shí)即可求得分布列及數(shù)學(xué)期望;
(2)(i)根據(jù)中位數(shù)的定義即可求得,從而求得列聯(lián)表;
(ii)利用獨(dú)立性檢驗(yàn)的卡方計(jì)算進(jìn)行檢驗(yàn),即可得解.
【詳解】(1)依題意,的可能取值為,
則,,,
所以的分布列為:
故.
(2)(i)依題意,可知這40只小白鼠體重增量的中位數(shù)是將兩組數(shù)據(jù)合在一起,從小到大排后第20位與第21位數(shù)據(jù)的平均數(shù),觀察數(shù)據(jù)可得第20位為,第21位數(shù)據(jù)為,
所以,
故列聯(lián)表為:
(ii)由(i)可得,,
所以能有的把握認(rèn)為小白鼠在高濃度臭氧環(huán)境中與正常環(huán)境中體重的增加量有差異.
3.(2022·全國(guó)新Ⅰ卷·高考真題)一醫(yī)療團(tuán)隊(duì)為研究某地的一種地方性疾病與當(dāng)?shù)鼐用竦男l(wèi)生習(xí)慣(衛(wèi)生習(xí)慣分為良好和不夠良好兩類)的關(guān)系,在已患該疾病的病例中隨機(jī)調(diào)查了100例(稱為病例組),同時(shí)在未患該疾病的人群中隨機(jī)調(diào)查了100人(稱為對(duì)照組),得到如下數(shù)據(jù):
(1)能否有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異?
(2)從該地的人群中任選一人,A表示事件“選到的人衛(wèi)生習(xí)慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛(wèi)生習(xí)慣不夠良好對(duì)患該疾病風(fēng)險(xiǎn)程度的一項(xiàng)度量指標(biāo),記該指標(biāo)為R.
(?。┳C明:;
(ⅱ)利用該調(diào)查數(shù)據(jù),給出的估計(jì)值,并利用(?。┑慕Y(jié)果給出R的估計(jì)值.
附,
【答案】(1)答案見解析
(2)(i)證明見解析;(ii);
【分析】(1)由所給數(shù)據(jù)結(jié)合公式求出的值,將其與臨界值比較大小,由此確定是否有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異;(2)(i) 根據(jù)定義結(jié)合條件概率公式即可完成證明;(ii)根據(jù)(i)結(jié)合已知數(shù)據(jù)求.
【詳解】(1)由已知,
又,,
所以有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異.
(2)(i)因?yàn)椋?br>所以
所以,
(ii)
由已知,,
又,,
所以
4.(2022·全國(guó)甲卷·高考真題)甲、乙兩城之間的長(zhǎng)途客車均由A和B兩家公司運(yùn)營(yíng),為了解這兩家公司長(zhǎng)途客車的運(yùn)行情況,隨機(jī)調(diào)查了甲、乙兩城之間的500個(gè)班次,得到下面列聯(lián)表:
(1)根據(jù)上表,分別估計(jì)這兩家公司甲、乙兩城之間的長(zhǎng)途客車準(zhǔn)點(diǎn)的概率;
(2)能否有90%的把握認(rèn)為甲、乙兩城之間的長(zhǎng)途客車是否準(zhǔn)點(diǎn)與客車所屬公司有關(guān)?
附:,
【答案】(1)A,B兩家公司長(zhǎng)途客車準(zhǔn)點(diǎn)的概率分別為,
(2)有
【分析】(1)根據(jù)表格中數(shù)據(jù)以及古典概型的概率公式可求得結(jié)果;
(2)根據(jù)表格中數(shù)據(jù)及公式計(jì)算,再利用臨界值表比較即可得結(jié)論.
【詳解】(1)根據(jù)表中數(shù)據(jù),A共有班次260次,準(zhǔn)點(diǎn)班次有240次,
設(shè)A家公司長(zhǎng)途客車準(zhǔn)點(diǎn)事件為M,
則;
B共有班次240次,準(zhǔn)點(diǎn)班次有210次,
設(shè)B家公司長(zhǎng)途客車準(zhǔn)點(diǎn)事件為N,
則.
A家公司長(zhǎng)途客車準(zhǔn)點(diǎn)的概率為;
B家公司長(zhǎng)途客車準(zhǔn)點(diǎn)的概率為.
(2)列聯(lián)表
=,
根據(jù)臨界值表可知,有的把握認(rèn)為甲、乙兩城之間的長(zhǎng)途客車是否準(zhǔn)點(diǎn)與客車所屬公司有關(guān).
5.(2021·全國(guó)甲卷·高考真題)甲、乙兩臺(tái)機(jī)床生產(chǎn)同種產(chǎn)品,產(chǎn)品按質(zhì)量分為一級(jí)品和二級(jí)品,為了比較兩臺(tái)機(jī)床產(chǎn)品的質(zhì)量,分別用兩臺(tái)機(jī)床各生產(chǎn)了200件產(chǎn)品,產(chǎn)品的質(zhì)量情況統(tǒng)計(jì)如下表:
(1)甲機(jī)床、乙機(jī)床生產(chǎn)的產(chǎn)品中一級(jí)品的頻率分別是多少?
(2)能否有99%的把握認(rèn)為甲機(jī)床的產(chǎn)品質(zhì)量與乙機(jī)床的產(chǎn)品質(zhì)量有差異?
附:
【答案】(1)75%;60%;
(2)能.
【分析】根據(jù)給出公式計(jì)算即可
【詳解】(1)甲機(jī)床生產(chǎn)的產(chǎn)品中的一級(jí)品的頻率為,
乙機(jī)床生產(chǎn)的產(chǎn)品中的一級(jí)品的頻率為.
(2),
故能有99%的把握認(rèn)為甲機(jī)床的產(chǎn)品與乙機(jī)床的產(chǎn)品質(zhì)量有差異.
6.(2020·海南·高考真題)為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測(cè)部門對(duì)某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的和濃度(單位:),得下表:
(1)估計(jì)事件“該市一天空氣中濃度不超過,且濃度不超過”的概率;
(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?
附:,
【答案】(1);(2)答案見解析;(3)有.
【分析】(1)根據(jù)表格中數(shù)據(jù)以及古典概型的概率公式可求得結(jié)果;
(2)根據(jù)表格中數(shù)據(jù)可得列聯(lián)表;
(3)計(jì)算出,結(jié)合臨界值表可得結(jié)論.
【詳解】(1)由表格可知,該市100天中,空氣中的濃度不超過75,且濃度不超過150的天數(shù)有天,
所以該市一天中,空氣中的濃度不超過75,且濃度不超過150的概率為;
(2)由所給數(shù)據(jù),可得列聯(lián)表為:
(3)根據(jù)列聯(lián)表中的數(shù)據(jù)可得

因?yàn)楦鶕?jù)臨界值表可知,有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān).
【點(diǎn)睛】本題考查了古典概型的概率公式,考查了完善列聯(lián)表,考查了獨(dú)立性檢驗(yàn),屬于中檔題.
7.(2020·山東·高考真題)為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測(cè)部門對(duì)某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了天空氣中的和濃度(單位:),得下表:
(1)估計(jì)事件“該市一天空氣中濃度不超過,且濃度不超過”的概率;
(2)根據(jù)所給數(shù)據(jù),完成下面的列聯(lián)表:
(3)根據(jù)(2)中的列聯(lián)表,判斷是否有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān)?
附:,
【答案】(1);(2)答案見解析;(3)有.
【分析】(1)根據(jù)表格中數(shù)據(jù)以及古典概型的概率公式可求得結(jié)果;
(2)根據(jù)表格中數(shù)據(jù)可得列聯(lián)表;
(3)計(jì)算出,結(jié)合臨界值表可得結(jié)論.
【詳解】(1)由表格可知,該市100天中,空氣中的濃度不超過75,且濃度不超過150的天數(shù)有天,
所以該市一天中,空氣中的濃度不超過75,且濃度不超過150的概率為;
(2)由所給數(shù)據(jù),可得列聯(lián)表為:
(3)根據(jù)列聯(lián)表中的數(shù)據(jù)可得
,
因?yàn)楦鶕?jù)臨界值表可知,有的把握認(rèn)為該市一天空氣中濃度與濃度有關(guān).
【點(diǎn)睛】本題考查了古典概型的概率公式,考查了完善列聯(lián)表,考查了獨(dú)立性檢驗(yàn),屬于中檔題.
8.(2020·全國(guó)·高考真題)某學(xué)生興趣小組隨機(jī)調(diào)查了某市100天中每天的空氣質(zhì)量等級(jí)和當(dāng)天到某公園鍛煉的人次,整理數(shù)據(jù)得到下表(單位:天):
(1)分別估計(jì)該市一天的空氣質(zhì)量等級(jí)為1,2,3,4的概率;
(2)求一天中到該公園鍛煉的平均人次的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(3)若某天的空氣質(zhì)量等級(jí)為1或2,則稱這天“空氣質(zhì)量好”;若某天的空氣質(zhì)量等級(jí)為3或4,則稱這天“空氣質(zhì)量不好”.根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表,判斷是否有95%的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān)?
附:,
【答案】(1)該市一天的空氣質(zhì)量等級(jí)分別為、、、的概率分別為、、、;(2);(3)有,理由見解析.
【分析】(1)根據(jù)頻數(shù)分布表可計(jì)算出該市一天的空氣質(zhì)量等級(jí)分別為、、、的概率;
(2)利用每組的中點(diǎn)值乘以頻數(shù),相加后除以可得結(jié)果;
(3)根據(jù)表格中的數(shù)據(jù)完善列聯(lián)表,計(jì)算出的觀測(cè)值,再結(jié)合臨界值表可得結(jié)論.
【詳解】(1)由頻數(shù)分布表可知,該市一天的空氣質(zhì)量等級(jí)為的概率為,等級(jí)為的概率為,等級(jí)為的概率為,等級(jí)為的概率為;
(2)由頻數(shù)分布表可知,一天中到該公園鍛煉的人次的平均數(shù)為
(3)列聯(lián)表如下:
,
因此,有的把握認(rèn)為一天中到該公園鍛煉的人次與該市當(dāng)天的空氣質(zhì)量有關(guān).
【點(diǎn)睛】本題考查利用頻數(shù)分布表計(jì)算頻率和平均數(shù),同時(shí)也考查了獨(dú)立性檢驗(yàn)的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.
9.(2017·全國(guó)·高考真題)(2017新課標(biāo)全國(guó)II理科)海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100 個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg).其頻率分布直方圖如下:

(1)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨(dú)立,記A表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg,新養(yǎng)殖法的箱產(chǎn)量不低于50 kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值(精確到0.01).
附:,
【答案】(1);
(2)列聯(lián)表見解析,有;
(3).
【分析】(1)利用相互獨(dú)立事件概率公式即可求得事件A的概率估計(jì)值.
(2)寫出列聯(lián)表計(jì)算的觀測(cè)值,即可確定有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)結(jié)合頻率分布直方圖估計(jì)中位數(shù)為.
【詳解】(1)記表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于” ,表示事件“新養(yǎng)殖法的箱產(chǎn)量不低于” ,
舊養(yǎng)殖法的箱產(chǎn)量低于的頻率為,
即的估計(jì)值為0.62,
新養(yǎng)殖法的箱產(chǎn)量不低于的頻率為,
即的估計(jì)值為0.66,
因此事件A的概率估計(jì)值為.
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表:
,
所以有的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)因?yàn)樾吗B(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中,箱產(chǎn)量低于的直方圖面積為
,
箱產(chǎn)量低于的直方圖面積為,
所以新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計(jì)值為.
考點(diǎn)02 線性回歸直線方程為載體及其應(yīng)用
1.(2022·全國(guó)乙卷·高考真題)某地經(jīng)過多年的環(huán)境治理,已將荒山改造成了綠水青山.為估計(jì)一林區(qū)某種樹木的總材積量,隨機(jī)選取了10棵這種樹木,測(cè)量每棵樹的根部橫截面積(單位:)和材積量(單位:),得到如下數(shù)據(jù):
并計(jì)算得.
(1)估計(jì)該林區(qū)這種樹木平均一棵的根部橫截面積與平均一棵的材積量;
(2)求該林區(qū)這種樹木的根部橫截面積與材積量的樣本相關(guān)系數(shù)(精確到0.01);
(3)現(xiàn)測(cè)量了該林區(qū)所有這種樹木的根部橫截面積,并得到所有這種樹木的根部橫截面積總和為.已知樹木的材積量與其根部橫截面積近似成正比.利用以上數(shù)據(jù)給出該林區(qū)這種樹木的總材積量的估計(jì)值.
附:相關(guān)系數(shù).
【答案】(1);
(2)
(3)
【分析】(1)計(jì)算出樣本的一棵根部橫截面積的平均值及一棵材積量平均值,即可估計(jì)該林區(qū)這種樹木平均一棵的根部橫截面積與平均一棵的材積量;
(2)代入題給相關(guān)系數(shù)公式去計(jì)算即可求得樣本的相關(guān)系數(shù)值;
(3)依據(jù)樹木的材積量與其根部橫截面積近似成正比,列方程即可求得該林區(qū)這種樹木的總材積量的估計(jì)值.
【詳解】(1)樣本中10棵這種樹木的根部橫截面積的平均值
樣本中10棵這種樹木的材積量的平均值
據(jù)此可估計(jì)該林區(qū)這種樹木平均一棵的根部橫截面積為,
平均一棵的材積量為
(2)

(3)設(shè)該林區(qū)這種樹木的總材積量的估計(jì)值為,
又已知樹木的材積量與其根部橫截面積近似成正比,
可得,解之得.
則該林區(qū)這種樹木的總材積量估計(jì)為
2.(2020·全國(guó)·高考真題)某沙漠地區(qū)經(jīng)過治理,生態(tài)系統(tǒng)得到很大改善,野生動(dòng)物數(shù)量有所增加.為調(diào)查該地區(qū)某種野生動(dòng)物的數(shù)量,將其分成面積相近的200個(gè)地塊,從這些地塊中用簡(jiǎn)單隨機(jī)抽樣的方法抽取20個(gè)作為樣區(qū),調(diào)查得到樣本數(shù)據(jù)(xi,yi)(i=1,2,…,20),其中xi和yi分別表示第i個(gè)樣區(qū)的植物覆蓋面積(單位:公頃)和這種野生動(dòng)物的數(shù)量,并計(jì)算得,,,,.
(1)求該地區(qū)這種野生動(dòng)物數(shù)量的估計(jì)值(這種野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)這種野生動(dòng)物數(shù)量的平均數(shù)乘以地塊數(shù));
(2)求樣本(xi,yi)(i=1,2,…,20)的相關(guān)系數(shù)(精確到0.01);
(3)根據(jù)現(xiàn)有統(tǒng)計(jì)資料,各地塊間植物覆蓋面積差異很大.為提高樣本的代表性以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì),請(qǐng)給出一種你認(rèn)為更合理的抽樣方法,并說明理由.
附:相關(guān)系數(shù)r=,≈1.414.
【答案】(1);(2);(3)詳見解析
【分析】(1)利用野生動(dòng)物數(shù)量的估計(jì)值等于樣區(qū)野生動(dòng)物平均數(shù)乘以地塊數(shù),代入數(shù)據(jù)即可;
(2)利用公式計(jì)算即可;
(3)各地塊間植物覆蓋面積差異較大,為提高樣本數(shù)據(jù)的代表性,應(yīng)采用分層抽樣.
【詳解】(1)樣區(qū)野生動(dòng)物平均數(shù)為,
地塊數(shù)為200,該地區(qū)這種野生動(dòng)物的估計(jì)值為
(2)樣本(i=1,2,…,20)的相關(guān)系數(shù)為
(3)由(2)知各樣區(qū)的這種野生動(dòng)物的數(shù)量與植物覆蓋面積有很強(qiáng)的正相關(guān)性,
由于各地塊間植物覆蓋面積差異很大,從而各地塊間這種野生動(dòng)物的數(shù)量差異很大,
采用分層抽樣的方法較好地保持了樣本結(jié)構(gòu)與總體結(jié)構(gòu)的一致性,提高了樣本的代表性,
從而可以獲得該地區(qū)這種野生動(dòng)物數(shù)量更準(zhǔn)確的估計(jì).
【點(diǎn)晴】本題主要考查平均數(shù)的估計(jì)值、相關(guān)系數(shù)的計(jì)算以及抽樣方法的選取,考查學(xué)生數(shù)學(xué)運(yùn)算能力,是一道容易題.
3.(2018·全國(guó)·高考真題)下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.
為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了與時(shí)間變量的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量的值依次為)建立模型②:.
(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;
(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說明理由.
【答案】(1)利用模型①預(yù)測(cè)值為226.1,利用模型②預(yù)測(cè)值為256.5,(2)利用模型②得到的預(yù)測(cè)值更可靠.
【詳解】分析:(1)兩個(gè)回歸直線方程中無(wú)參數(shù),所以分別求自變量為2018時(shí)所對(duì)應(yīng)的函數(shù)值,就得結(jié)果;(2)根據(jù)折線圖知2000到2009,與2010到2016是兩個(gè)有明顯區(qū)別的直線,且2010到2016的增幅明顯高于2000到2009,也高于模型1的增幅,因此所以用模型2更能較好得到2018的預(yù)測(cè).
詳解:(1)利用模型①,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為
=–30.4+13.5×19=226.1(億元).
利用模型②,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值為
=99+17.5×9=256.5(億元).
(2)利用模型②得到的預(yù)測(cè)值更可靠.
理由如下:
(i)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)沒有隨機(jī)散布在直線y=–30.4+13.5t上下,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì).2010年相對(duì)2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對(duì)應(yīng)的點(diǎn)位于一條直線的附近,這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長(zhǎng)趨勢(shì),利用2010年至2016年的數(shù)據(jù)建立的線性模型=99+17.5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢(shì),因此利用模型②得到的預(yù)測(cè)值更可靠.
(ii)從計(jì)算結(jié)果看,相對(duì)于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①得到的預(yù)測(cè)值226.1億元的增幅明顯偏低,而利用模型②得到的預(yù)測(cè)值的增幅比較合理,說明利用模型②得到的預(yù)測(cè)值更可靠.
點(diǎn)睛:若已知回歸直線方程,則可以直接將數(shù)值代入求得特定要求下的預(yù)測(cè)值;若回歸直線方程有待定參數(shù),則根據(jù)回歸直線方程恒過點(diǎn)求參數(shù).
4.(2017·全國(guó)·高考真題)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(?。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
經(jīng)計(jì)算得,,其中xi為抽取的第i個(gè)零件的尺寸,.
用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布,則,,.
【答案】(1),(2)(ⅰ)見詳解;(ⅱ)需要. ,
【分析】(1)依題知一個(gè)零件的尺寸在之內(nèi)的概率,可知尺寸在之外的概率為0.0026,而,進(jìn)而可以求出的數(shù)學(xué)期望.
(2)(i)判斷監(jiān)控生產(chǎn)過程的方法的合理性,重點(diǎn)是考慮一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件的概率是大還是小,若小即合理;
(ii)計(jì)算,剔除之外的數(shù)據(jù),算出剩下數(shù)據(jù)的平均數(shù),即為的估計(jì)值,剔除之外的數(shù)據(jù),剩下數(shù)據(jù)的樣本方差,即為的估計(jì)值.
【詳解】(1)抽取的一個(gè)零件的尺寸在之內(nèi)的概率為0.9974,
從而零件的尺寸在之外的概率為0.0026,
故.
因此.
的數(shù)學(xué)期望為.
(2)(i)如果生產(chǎn)狀態(tài)正常,
一個(gè)零件尺寸在之外的概率只有0.0026,
一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件
概率只有0.0408,發(fā)生的概率很小.
因此一旦發(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程
可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查,
可見上述監(jiān)控生產(chǎn)過程的方法是合理的.
(ii)由,
得的估計(jì)值為,的估計(jì)值為,
由樣本數(shù)據(jù)可以看出有一個(gè)零件的尺寸在之外,
因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
剔除之外的數(shù)據(jù),
剩下數(shù)據(jù)的平均數(shù)為,
因此的估計(jì)值為.
,
剔除之外的數(shù)據(jù),
剩下數(shù)據(jù)的樣本方差為,
因此的估計(jì)值為.
【點(diǎn)睛】本題考查正態(tài)分布的實(shí)際應(yīng)用以及離散型隨機(jī)變量的數(shù)學(xué)期望,正態(tài)分布是一種重要的分布,尤其是正態(tài)分布的原則,審清題意,細(xì)心計(jì)算,屬中檔題.
5.(2017·全國(guó)·高考真題)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測(cè)量其尺寸(單位:).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:
經(jīng)計(jì)算得,,
,其中為抽取的第個(gè)零件的尺寸,.
(1)求的相關(guān)系數(shù),并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小(若,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小).
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(?。倪@一天抽檢的結(jié)果看,是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?
(ⅱ)在之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到)附:樣本的相關(guān)系數(shù)
,.
【答案】(1)可以;(2)(?。┬枰唬áⅲ?,.
【分析】(1)依公式求;
(2)(i)由,得抽取的第13個(gè)零件的尺寸在以外,因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查;(ii)剔除第13個(gè)數(shù)據(jù),則均值的估計(jì)值為10.02,方差為0.09.
【詳解】(1)由樣本數(shù)據(jù)得的相關(guān)系數(shù)為
.
由于,因此可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小.
(2)(i)由于,
由樣本數(shù)據(jù)可以看出抽取的第13個(gè)零件的尺寸在以外,
因此需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.
(ii)剔除離群值,即第13個(gè)數(shù)據(jù),
剩下數(shù)據(jù)的平均數(shù)為,
這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值的估計(jì)值為10.02.
,
剔除第13個(gè)數(shù)據(jù),剩下數(shù)據(jù)的樣本方差為
,
這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的標(biāo)準(zhǔn)差的估計(jì)值為.
【點(diǎn)睛】解答新穎的數(shù)學(xué)題時(shí),一是通過轉(zhuǎn)化,化“新”為“舊”;二是通過深入分析,多方聯(lián)想,以“舊”攻“新”;三是創(chuàng)造性地運(yùn)用數(shù)學(xué)思想方法,以“新”制“新”,應(yīng)特別關(guān)注創(chuàng)新題型的切入點(diǎn)和生長(zhǎng)點(diǎn).
6.(2016·全國(guó)·高考真題)下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.

(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.
附注:
參考數(shù)據(jù):,,
,≈2.646.
參考公式:相關(guān)系數(shù)
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
【答案】(Ⅰ)答案見解析;(Ⅱ)答案見解析.
【詳解】試題分析:(Ⅰ)根據(jù)相關(guān)系數(shù)的公式求出相關(guān)數(shù)據(jù)后,代入公式即可求得的值,最后根據(jù)值的大小回答即可;(Ⅱ)準(zhǔn)確求得相關(guān)數(shù)據(jù),利用最小二乘法建立y關(guān)于t的回歸方程,然后預(yù)測(cè).
試題解析:(Ⅰ)由折線圖中數(shù)據(jù)和附注中參考數(shù)據(jù)得
,,,
,
.
因?yàn)榕c的相關(guān)系數(shù)近似為0.99,說明與的線性相關(guān)相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.
(Ⅱ)由及(Ⅰ)得,
.
所以,關(guān)于的回歸方程為:.
將2016年對(duì)應(yīng)的代入回歸方程得:.
所以預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量將約1.82億噸.
【考點(diǎn)】線性相關(guān)系數(shù)與線性回歸方程的求法與應(yīng)用.
【方法點(diǎn)撥】(1)判斷兩個(gè)變量是否線性相關(guān)及相關(guān)程度通常有兩種方法:(1)利用散點(diǎn)圖直觀判斷;(2)將相關(guān)數(shù)據(jù)代入相關(guān)系數(shù)公式求出,然后根據(jù)的大小進(jìn)行判斷.求線性回歸方程時(shí)要嚴(yán)格按照公式求解,并一定要注意計(jì)算的準(zhǔn)確性.
7.(2015·重慶·高考真題)隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:

(Ⅰ)求y關(guān)于t的回歸方程
(Ⅱ)用所求回歸方程預(yù)測(cè)該地區(qū)2015年()的人民幣儲(chǔ)蓄存款.
附:回歸方程中
【答案】(Ⅰ),(Ⅱ)千億元.
【詳解】試題分析:(Ⅰ)列表分別計(jì)算出,的值,然后代入求得,再代入求出值,從而就可得到回歸方程,
(Ⅱ)將代入回歸方程可預(yù)測(cè)該地區(qū)2015年的人民幣儲(chǔ)蓄存款.
試題解析: (1)列表計(jì)算如下
這里

從而.
故所求回歸方程為.
(2)將代入回歸方程可預(yù)測(cè)該地區(qū)2015年的人民幣儲(chǔ)蓄存款為
考點(diǎn):線性回歸方程.
考點(diǎn)03 賽事類(分配類)的分布列及期望方差
1.(2024·全國(guó)新Ⅱ卷·高考真題)某投籃比賽分為兩個(gè)階段,每個(gè)參賽隊(duì)由兩名隊(duì)員組成,比賽具體規(guī)則如下:第一階段由參賽隊(duì)中一名隊(duì)員投籃3次,若3次都未投中,則該隊(duì)被淘汰,比賽成績(jī)?yōu)?分;若至少投中一次,則該隊(duì)進(jìn)入第二階段.第二階段由該隊(duì)的另一名隊(duì)員投籃3次,每次投籃投中得5分,未投中得0分.該隊(duì)的比賽成績(jī)?yōu)榈诙A段的得分總和.某參賽隊(duì)由甲、乙兩名隊(duì)員組成,設(shè)甲每次投中的概率為p,乙每次投中的概率為q,各次投中與否相互獨(dú)立.
(1)若,,甲參加第一階段比賽,求甲、乙所在隊(duì)的比賽成績(jī)不少于5分的概率.
(2)假設(shè),
(i)為使得甲、乙所在隊(duì)的比賽成績(jī)?yōu)?5分的概率最大,應(yīng)該由誰(shuí)參加第一階段比賽?
(ii)為使得甲、乙所在隊(duì)的比賽成績(jī)的數(shù)學(xué)期望最大,應(yīng)該由誰(shuí)參加第一階段比賽?
【答案】(1)
(2)(i)由甲參加第一階段比賽;(i)由甲參加第一階段比賽;
【分析】(1)根據(jù)對(duì)立事件的求法和獨(dú)立事件的乘法公式即可得到答案;
(2)(i)首先各自計(jì)算出,,再作差因式分解即可判斷;(ii)首先得到和的所有可能取值,再按步驟列出分布列,計(jì)算出各自期望,再次作差比較大小即可.
【詳解】(1)甲、乙所在隊(duì)的比賽成績(jī)不少于5分,則甲第一階段至少投中1次,乙第二階段也至少投中1次,
比賽成績(jī)不少于5分的概率.
(2)(i)若甲先參加第一階段比賽,則甲、乙所在隊(duì)的比賽成績(jī)?yōu)?5分的概率為,
若乙先參加第一階段比賽,則甲、乙所在隊(duì)的比賽成績(jī)?yōu)?5分的概率為,

,
,應(yīng)該由甲參加第一階段比賽.
(ii)若甲先參加第一階段比賽,比賽成績(jī)的所有可能取值為0,5,10,15,
,
,
,
,
記乙先參加第一階段比賽,比賽成績(jī)的所有可能取值為0,5,10,15,
同理

因?yàn)?,則,,
則,
應(yīng)該由甲參加第一階段比賽.
【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題第二問的關(guān)鍵是計(jì)算出相關(guān)概率和期望,采用作差法并因式分解從而比較出大小關(guān)系,最后得到結(jié)論.
2.(2023·全國(guó)新Ⅰ卷·高考真題)甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對(duì)方投籃.無(wú)論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.
(1)求第2次投籃的人是乙的概率;
(2)求第次投籃的人是甲的概率;
(3)已知:若隨機(jī)變量服從兩點(diǎn)分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.
【答案】(1)
(2)
(3)
【分析】(1)根據(jù)全概率公式即可求出;
(2)設(shè),由題意可得,根據(jù)數(shù)列知識(shí),構(gòu)造等比數(shù)列即可解出;
(3)先求出兩點(diǎn)分布的期望,再根據(jù)題中的結(jié)論以及等比數(shù)列的求和公式即可求出.
【詳解】(1)記“第次投籃的人是甲”為事件,“第次投籃的人是乙”為事件,
所以,
.
(2)設(shè),依題可知,,則
,
即,
構(gòu)造等比數(shù)列,
設(shè),解得,則,
又,所以是首項(xiàng)為,公比為的等比數(shù)列,
即.
(3)因?yàn)?,?br>所以當(dāng)時(shí),,
故.
【點(diǎn)睛】本題第一問直接考查全概率公式的應(yīng)用,后兩問的解題關(guān)鍵是根據(jù)題意找到遞推式,然后根據(jù)數(shù)列的基本知識(shí)求解.
3.(2022·全國(guó)甲卷·高考真題)甲、乙兩個(gè)學(xué)校進(jìn)行體育比賽,比賽共設(shè)三個(gè)項(xiàng)目,每個(gè)項(xiàng)目勝方得10分,負(fù)方得0分,沒有平局.三個(gè)項(xiàng)目比賽結(jié)束后,總得分高的學(xué)校獲得冠軍.已知甲學(xué)校在三個(gè)項(xiàng)目中獲勝的概率分別為0.5,0.4,0.8,各項(xiàng)目的比賽結(jié)果相互獨(dú)立.
(1)求甲學(xué)校獲得冠軍的概率;
(2)用X表示乙學(xué)校的總得分,求X的分布列與期望.
【答案】(1);
(2)分布列見解析,.
【分析】(1)設(shè)甲在三個(gè)項(xiàng)目中獲勝的事件依次記為,再根據(jù)甲獲得冠軍則至少獲勝兩個(gè)項(xiàng)目,利用互斥事件的概率加法公式以及相互獨(dú)立事件的乘法公式即可求出;
(2)依題可知,的可能取值為,再分別計(jì)算出對(duì)應(yīng)的概率,列出分布列,即可求出期望.
【詳解】(1)設(shè)甲在三個(gè)項(xiàng)目中獲勝的事件依次記為,所以甲學(xué)校獲得冠軍的概率為

(2)依題可知,的可能取值為,所以,
,
,
,
.
即的分布列為
期望.
4.(2022·北京·高考真題)在校運(yùn)動(dòng)會(huì)上,只有甲、乙、丙三名同學(xué)參加鉛球比賽,比賽成績(jī)達(dá)到以上(含)的同學(xué)將獲得優(yōu)秀獎(jiǎng).為預(yù)測(cè)獲得優(yōu)秀獎(jiǎng)的人數(shù)及冠軍得主,收集了甲、乙、丙以往的比賽成績(jī),并整理得到如下數(shù)據(jù)(單位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假設(shè)用頻率估計(jì)概率,且甲、乙、丙的比賽成績(jī)相互獨(dú)立.
(1)估計(jì)甲在校運(yùn)動(dòng)會(huì)鉛球比賽中獲得優(yōu)秀獎(jiǎng)的概率;
(2)設(shè)X是甲、乙、丙在校運(yùn)動(dòng)會(huì)鉛球比賽中獲得優(yōu)秀獎(jiǎng)的總?cè)藬?shù),估計(jì)X的數(shù)學(xué)期望E(X);
(3)在校運(yùn)動(dòng)會(huì)鉛球比賽中,甲、乙、丙誰(shuí)獲得冠軍的概率估計(jì)值最大?(結(jié)論不要求證明)
【答案】(1)0.4
(2)
(3)丙
【分析】(1) 由頻率估計(jì)概率即可
(2) 求解得X的分布列,即可計(jì)算出X的數(shù)學(xué)期望.
(3) 計(jì)算出各自獲得最高成績(jī)的概率,再根據(jù)其各自的最高成績(jī)可判斷丙奪冠的概率估計(jì)值最大.
【詳解】(1)由頻率估計(jì)概率可得
甲獲得優(yōu)秀的概率為0.4,乙獲得優(yōu)秀的概率為0.5,丙獲得優(yōu)秀的概率為0.5,
故答案為0.4
(2)設(shè)甲獲得優(yōu)秀為事件A1,乙獲得優(yōu)秀為事件A2,丙獲得優(yōu)秀為事件A3
,
,
,
.
∴X的分布列為

(3)丙奪冠概率估計(jì)值最大.
因?yàn)殂U球比賽無(wú)論比賽幾次就取最高成績(jī).比賽一次,丙獲得9.85的概率為,甲獲得9.80的概率為,乙獲得9.78的概率為.并且丙的最高成績(jī)是所有成績(jī)中最高的,比賽次數(shù)越多,對(duì)丙越有利.
5.(2021·全國(guó)新Ⅰ卷·高考真題)某學(xué)校組織“一帶一路”知識(shí)競(jìng)賽,有A,B兩類問題,每位參加比賽的同學(xué)先在兩類問題中選擇一類并從中隨機(jī)抽取一個(gè)問題回答,若回答錯(cuò)誤則該同學(xué)比賽結(jié)束;若回答正確則從另一類問題中再隨機(jī)抽取一個(gè)問題回答,無(wú)論回答正確與否,該同學(xué)比賽結(jié)束.A類問題中的每個(gè)問題回答正確得20分,否則得0分;B類問題中的每個(gè)問題回答正確得80分,否則得0分,已知小明能正確回答A類問題的概率為0.8,能正確回答B(yǎng)類問題的概率為0.6,且能正確回答問題的概率與回答次序無(wú)關(guān).
(1)若小明先回答A類問題,記為小明的累計(jì)得分,求的分布列;
(2)為使累計(jì)得分的期望最大,小明應(yīng)選擇先回答哪類問題?并說明理由.
【答案】(1)見解析;(2)類.
【分析】(1)通過題意分析出小明累計(jì)得分的所有可能取值,逐一求概率列分布列即可.(2)與(1)類似,找出先回答類問題的數(shù)學(xué)期望,比較兩個(gè)期望的大小即可.
【詳解】(1)由題可知,的所有可能取值為,,.
;
;

所以的分布列為
(2)由(1)知,.
若小明先回答問題,記為小明的累計(jì)得分,則的所有可能取值為,,.
;
;

所以.
因?yàn)椋孕∶鲬?yīng)選擇先回答類問題.
6.(2020·全國(guó)·高考真題)甲、乙、丙三位同學(xué)進(jìn)行羽毛球比賽,約定賽制如下:累計(jì)負(fù)兩場(chǎng)者被淘汰;比賽前抽簽決定首先比賽的兩人,另一人輪空;每場(chǎng)比賽的勝者與輪空者進(jìn)行下一場(chǎng)比賽,負(fù)者下一場(chǎng)輪空,直至有一人被淘汰;當(dāng)一人被淘汰后,剩余的兩人繼續(xù)比賽,直至其中一人被淘汰,另一人最終獲勝,比賽結(jié)束.經(jīng)抽簽,甲、乙首先比賽,丙輪空.設(shè)每場(chǎng)比賽雙方獲勝的概率都為,
(1)求甲連勝四場(chǎng)的概率;
(2)求需要進(jìn)行第五場(chǎng)比賽的概率;
(3)求丙最終獲勝的概率.
【答案】(1);(2);(3).
【分析】(1)根據(jù)獨(dú)立事件的概率乘法公式可求得事件“甲連勝四場(chǎng)”的概率;
(2)計(jì)算出四局以內(nèi)結(jié)束比賽的概率,然后利用對(duì)立事件的概率公式可求得所求事件的概率;
(3)列舉出甲贏的基本事件,結(jié)合獨(dú)立事件的概率乘法公式計(jì)算出甲贏的概率,由對(duì)稱性可知乙贏的概率和甲贏的概率相等,再利用對(duì)立事件的概率可求得丙贏的概率.
【詳解】(1)記事件甲連勝四場(chǎng),則;
(2)記事件為甲輸,事件為乙輸,事件為丙輸,
則四局內(nèi)結(jié)束比賽的概率為
,
所以,需要進(jìn)行第五場(chǎng)比賽的概率為;
(3)記事件為甲輸,事件為乙輸,事件為丙輸,
記事件甲贏,記事件丙贏,
則甲贏的基本事件包括:、、、
、、、、,
所以,甲贏的概率為.
由對(duì)稱性可知,乙贏的概率和甲贏的概率相等,
所以丙贏的概率為.
【點(diǎn)睛】本題考查獨(dú)立事件概率的計(jì)算,解答的關(guān)鍵就是列舉出符合條件的基本事件,考查計(jì)算能力,屬于中等題.
7.(2019·天津·高考真題)設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨(dú)立.
(Ⅰ)用表示甲同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;
(Ⅱ)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在7:30之前到校的天數(shù)比乙同學(xué)在7:30之前到校的天數(shù)恰好多2”,求事件發(fā)生的概率.
【答案】(Ⅰ)見解析;(Ⅱ)
【分析】(Ⅰ)由題意可知分布列為二項(xiàng)分布,結(jié)合二項(xiàng)分布的公式求得概率可得分布列,然后利用二項(xiàng)分布的期望公式求解數(shù)學(xué)期望即可;
(Ⅱ)由題意結(jié)合獨(dú)立事件概率公式計(jì)算可得滿足題意的概率值.
【詳解】(Ⅰ)因?yàn)榧淄瑢W(xué)上學(xué)期間的三天中到校情況相互獨(dú)立,且每天7:30之前到校的概率均為,
故,從面.
所以,隨機(jī)變量的分布列為:
隨機(jī)變量的數(shù)學(xué)期望.
(Ⅱ)設(shè)乙同學(xué)上學(xué)期間的三天中7:30之前到校的天數(shù)為,則.
且.
由題意知事件與互斥,
且事件與,事件與均相互獨(dú)立,
從而由(Ⅰ)知:
.
【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,互斥事件和相互獨(dú)立事件的概率計(jì)算公式等基礎(chǔ)知識(shí).考查運(yùn)用概率知識(shí)解決簡(jiǎn)單實(shí)際問題的能力.
8.(2019·全國(guó)·高考真題)11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
【答案】(1);(2)0.1
【分析】(1)本題首先可以通過題意推導(dǎo)出所包含的事件為“甲連贏兩球或乙連贏兩球”,然后計(jì)算出每種事件的概率并求和即可得出結(jié)果;
(2)本題首先可以通過題意推導(dǎo)出所包含的事件為“前兩球甲乙各得分,后兩球均為甲得分”,然后計(jì)算出每種事件的概率并求和即可得出結(jié)果.
【詳解】(1)由題意可知,所包含的事件為“甲連贏兩球或乙連贏兩球”
所以
(2)由題意可知,包含的事件為“前兩球甲乙各得分,后兩球均為甲得分”
所以
【點(diǎn)睛】本題考查古典概型的相關(guān)性質(zhì),能否通過題意得出以及所包含的事件是解決本題的關(guān)鍵,考查推理能力,考查學(xué)生從題目中獲取所需信息的能力,是中檔題.
9.(2017·山東·高考真題)在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來(lái)評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(I)求接受甲種心理暗示的志愿者中包含A1但不包含的概率.
(II)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.
【答案】(1) (2)見解析
【詳解】(I)記接受甲種心理暗示的志愿者中包含但不包含的事件為M,計(jì)算即得
(II)由題意知X可取的值為:.利用超幾何分布概率計(jì)算公式
得X的分布列為
進(jìn)一步計(jì)算X的數(shù)學(xué)期望.
試題解析:(I)記接受甲種心理暗示的志愿者中包含但不包含的事件為M,則
(II)由題意知X可取的值為:.則
因此X的分布列為
X的數(shù)學(xué)期望是
=
【名師點(diǎn)睛】本題主要考查古典概型的概率公式和超幾何分布概率計(jì)算公式、隨機(jī)變量的分布列和數(shù)學(xué)期望.解答本題,首先要準(zhǔn)確確定所研究對(duì)象的基本事件空間、基本事件個(gè)數(shù),利用超幾何分布的概率公式.本題屬中等難度的題目,計(jì)算量不是很大,能很好的考查考生數(shù)學(xué)應(yīng)用意識(shí)、基本運(yùn)算求解能力等.
10.(2016·山東·高考真題)甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(Ⅰ)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(Ⅱ)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.
【答案】(Ⅰ)(Ⅱ)分布列見解析,
【詳解】試題分析:(Ⅰ)找出“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)所包含的基本事件,由獨(dú)立事件的概率公式和互斥事件的概率加法公式求解;(Ⅱ)由題意,隨機(jī)變量的可能取值為0,1,2,3,4,6.由事件的獨(dú)立性與互斥性,得到的分布列,根據(jù)期望公式求解.
試題解析:
(Ⅰ)記事件A:“甲第一輪猜對(duì)”,記事件B:“乙第一輪猜對(duì)”,
記事件C:“甲第二輪猜對(duì)”,記事件D:“乙第二輪猜對(duì)”,
記事件E:“‘星隊(duì)’至少猜對(duì)3個(gè)成語(yǔ)”.
由題意,
由事件的獨(dú)立性與互斥性,
,
所以“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率為.
(Ⅱ)由題意,隨機(jī)變量的可能取值為0,1,2,3,4,6.
由事件的獨(dú)立性與互斥性,得
,
,
,
,
,
.
可得隨機(jī)變量的分布列為

所以數(shù)學(xué)期望.
【考點(diǎn)】獨(dú)立事件的概率公式和互斥事件的概率加法公式,分布列和數(shù)學(xué)期望
【名師點(diǎn)睛】本題主要考查獨(dú)立事件的概率公式和互斥事件的概率加法公式、隨機(jī)變量的分布列和數(shù)學(xué)期望.解答本題,首先要準(zhǔn)確確定所研究對(duì)象的基本事件空間、基本事件個(gè)數(shù),利用獨(dú)立事件的概率公式和互斥事件的概率加法公式求解.本題較難,能很好的考查考生的數(shù)學(xué)應(yīng)用意識(shí)、基本運(yùn)算求解能力等.
11.(2016·天津·高考真題)邗江中學(xué)高二年級(jí)某班某小組共10人,利用寒假參加義工活動(dòng),已知參加義工活動(dòng)次數(shù)為1,2,3的人數(shù)分別為2,4,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會(huì).
(1)記“選出2人參加義工活動(dòng)的次數(shù)之和為4”為事件,求事件發(fā)生的概率;
(2)設(shè)為選出2人參加義工活動(dòng)次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
【答案】(1)(2).
【分析】(1)由已知得,即可得到事件的概率.(2)由題意得,得到隨機(jī)變量的所有可能取值,利用組合知識(shí),結(jié)合古典概型概率公式求得隨機(jī)變量取每個(gè)值的概率,即可得到隨機(jī)變量的分布列,利用期望公式計(jì)算其數(shù)學(xué)期望.
【詳解】(1)由已知得.所以事件發(fā)生的概率為.
(2)隨機(jī)變量的所有可能取值為0,1,2
計(jì)算,

;
所以隨機(jī)變量的分布列為:
隨機(jī)變量的數(shù)學(xué)期望為.
【點(diǎn)睛】本題主要考查了古典概型概率公式的應(yīng)用及隨機(jī)變量的分布列、數(shù)學(xué)期望,屬于中檔題. 求解數(shù)學(xué)期望問題,首先要正確理解題意,其次要準(zhǔn)確無(wú)誤的找出隨機(jī)變量的所有可能值,計(jì)算出相應(yīng)的概率,寫出隨機(jī)變量的分布列,正確運(yùn)用均值、方差的公式進(jìn)行計(jì)算,也就是要過三關(guān):(1)閱讀理解關(guān);(2)概率計(jì)算關(guān);(3)公式應(yīng)用關(guān).
12.(2015·重慶·高考真題)端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗,設(shè)一盤中裝有個(gè)粽子,其中豆沙粽個(gè),肉粽個(gè),白粽個(gè),這三種粽子的外觀完全相同,從中任意選取個(gè).
()求三種粽子各取到個(gè)的概率.
()設(shè)表示取到的豆沙粽個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
【答案】(1) ;(2)見解析.
【詳解】試題分析:(Ⅰ)根據(jù)古典概型的概率公式進(jìn)行計(jì)算即可;(Ⅱ)隨機(jī)變量X的取值為:0,1,2,別求出對(duì)應(yīng)的概率,即可求出分布列和期望
試題解析:(1)令A(yù)表示事件“三種粽子各取到1個(gè)”,由古典概型的概率計(jì)算公式有
P(A)==.
(2)X的可能取值為0,1,2,且
P(X=0)==,
P(X=1)==,
P(X=2)==
綜上知,X的分布列為:
故E(X)=0×+1×+2×= (個(gè))
考點(diǎn):離散型隨機(jī)變量的期望與方差;古典概型及其概率計(jì)算公式
13.(2015·天津·高考真題)為推動(dòng)乒乓球運(yùn)動(dòng)的發(fā)展,某乒乓球比賽允許不同協(xié)會(huì)的運(yùn)動(dòng)員組隊(duì)參加.現(xiàn)有來(lái)自甲協(xié)會(huì)的運(yùn)動(dòng)員3名,其中種子選手2名;乙協(xié)會(huì)的運(yùn)動(dòng)員5名,其中種子選手3名.從這8名運(yùn)動(dòng)員中隨機(jī)選擇4人參加比賽.
(1)設(shè)為事件“選出的4人中恰有2 名種子選手,且這2名種子選手來(lái)自同一個(gè)協(xié)會(huì)”,求事件發(fā)生的概率;
(2)設(shè)為選出的4人中種子選手的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.
【答案】(1);(2).
【詳解】(Ⅰ)由已知,有
所以事件發(fā)生的概率為.
(Ⅱ)隨機(jī)變量的所有可能取值為
所以隨機(jī)變量的分布列為

所以隨機(jī)變量的數(shù)學(xué)期望
考點(diǎn):古典概型、互斥事件、離散型隨機(jī)變量的分布列與數(shù)學(xué)期望.
14.(2015·湖南·高考真題)某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒有紅球,則不獲獎(jiǎng).
(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率;
(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為,求的分布列和數(shù)學(xué)期望.
【答案】(1);(2)詳分布列見解析,.
【分析】(1)記事件{從甲箱中摸出的1個(gè)球是紅球},{從乙箱中摸出的1個(gè)球是紅球}
{顧客抽獎(jiǎng)1次獲一等獎(jiǎng)},{顧客抽獎(jiǎng)1次獲二等獎(jiǎng)},{顧客抽獎(jiǎng)1次能獲獎(jiǎng)},則可知與相互獨(dú)立,與互斥,與互斥,且,,,再利用概率的加法公式即可求解;(2)分析題意可知,分別求得;;;,即可知的概率分布及其期望.
【詳解】(1)記事件{從甲箱中摸出的1個(gè)球是紅球},
{從乙箱中摸出的1個(gè)球是紅球},
{顧客抽獎(jiǎng)1次獲一等獎(jiǎng)},
{顧客抽獎(jiǎng)1次獲二等獎(jiǎng)},
{顧客抽獎(jiǎng)1次能獲獎(jiǎng)},
由題意,與相互獨(dú)立,與互斥,與互斥,
且,,,
∵,,
∴,
,
故所求概率為;
(2)顧客抽獎(jiǎng)3次獨(dú)立重復(fù)試驗(yàn),由(1)知,顧客抽獎(jiǎng)1次獲一等獎(jiǎng)的概率為,
∴,
于是;
;
;

故的分布列為
的數(shù)學(xué)期望為.
考點(diǎn):1.概率的加法公式;2.離散型隨機(jī)變量的概率分布與期望.
【名師點(diǎn)睛】本題主要考查了離散型隨機(jī)變量的概率分布與期望以及概率統(tǒng)計(jì)在生活中的實(shí)際應(yīng)用,這一直都是高考命題的熱點(diǎn),試題的背景由傳統(tǒng)的摸球,骰子問題向現(xiàn)實(shí)生活中的熱點(diǎn)問題轉(zhuǎn)化,并且與統(tǒng)計(jì)的聯(lián)系越來(lái)越密切,與統(tǒng)計(jì)中的抽樣,頻率分布直方圖等基礎(chǔ)知識(shí)綜合的試題逐漸增多,在復(fù)習(xí)時(shí)應(yīng)予以關(guān)注.
15.(2015·安徽·高考真題)已知2件次品和3件正品混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)束.
(Ⅰ)求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;
(Ⅱ)已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ)
【詳解】試題分析:(1)求古典概型概率,先確定兩次檢測(cè)基本事件個(gè)數(shù):,再確定第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的基本事件個(gè)數(shù),從而得所求事件概率為(2)先確定隨機(jī)變量:最少兩次(兩次皆為次品),最多四次(前三次兩次正品,一次次品),三次情況較多,可利用補(bǔ)集求其概率,列出分布列,最后根據(jù)數(shù)學(xué)期望公式求期望
試題解析:解:(Ⅰ)記“第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品”為事件,
(Ⅱ)的可能取值為200,300,400
(或)
故的分布列為

考點(diǎn):1.古典概型概率;2.分布列和數(shù)學(xué)期望.
【方法點(diǎn)睛】(1)求隨機(jī)變量的分布列的主要步驟:一是明確隨機(jī)變量的取值,并確定隨機(jī)變量服從何種概率分布;二是求每一個(gè)隨機(jī)變量取值的概率,三是列成表格;(2)求出分布列后注意運(yùn)用分布列的兩條性質(zhì)檢驗(yàn)所求的分布列是否正確;(3)求解離散隨機(jī)變量分布列和方差,首先要理解問題的關(guān)鍵,其次要準(zhǔn)確無(wú)誤的找出隨機(jī)變量的所有可能值,計(jì)算出相對(duì)應(yīng)的概率,寫成隨機(jī)變量的分布列,正確運(yùn)用均值、方差公式進(jìn)行計(jì)算.
16.(2015·福建·高考真題)某銀行規(guī)定,一張銀行卡若在一天內(nèi)出現(xiàn)3次密碼嘗試錯(cuò)誤,該銀行卡將被鎖定,小王到銀行取錢時(shí),發(fā)現(xiàn)自己忘記了銀行卡的密碼,但是可以確定該銀行卡的正確密碼是他常用的6個(gè)密碼之一,小王決定從中不重復(fù)地隨機(jī)選擇1個(gè)進(jìn)行嘗試.若密碼正確,則結(jié)束嘗試;否則繼續(xù)嘗試,直至該銀行卡被鎖定.
(Ⅰ)求當(dāng)天小王的該銀行卡被鎖定的概率;
(Ⅱ)設(shè)當(dāng)天小王用該銀行卡嘗試密碼次數(shù)為X,求X的分布列和數(shù)學(xué)期望.
【答案】(Ⅰ);(Ⅱ)分布列見解析,期望為.
【詳解】(Ⅰ)設(shè)“當(dāng)天小王的該銀行卡被鎖定”的事件為A,

(Ⅱ)依題意得,X所有可能的取值是1,2,3

所以X的分布列為
所以.
考點(diǎn):1、古典概型;2、離散型隨機(jī)變量的分布列和期望.
考點(diǎn)04 其他類型的分布列及期望方差
1.(2024·北京·高考真題)某保險(xiǎn)公司為了了解該公司某種保險(xiǎn)產(chǎn)品的索賠情況,從合同險(xiǎn)期限屆滿的保單中隨機(jī)抽取1000份,記錄并整理這些保單的索賠情況,獲得數(shù)據(jù)如下表:
假設(shè):一份保單的保費(fèi)為0.4萬(wàn)元;前3次索賠時(shí),保險(xiǎn)公司每次賠償0.8萬(wàn)元;第四次索賠時(shí),保險(xiǎn)公司賠償0.6萬(wàn)元.假設(shè)不同保單的索賠次數(shù)相互獨(dú)立.用頻率估計(jì)概率.
(1)估計(jì)一份保單索賠次數(shù)不少于2的概率;
(2)一份保單的毛利潤(rùn)定義為這份保單的保費(fèi)與賠償總金額之差.
(i)記為一份保單的毛利潤(rùn),估計(jì)的數(shù)學(xué)期望;
(ⅱ)如果無(wú)索賠的保單的保費(fèi)減少,有索賠的保單的保費(fèi)增加,試比較這種情況下一份保單毛利潤(rùn)的數(shù)學(xué)期望估計(jì)值與(i)中估計(jì)值的大小.(結(jié)論不要求證明)
【答案】(1)
(2)(i)0.122萬(wàn)元;(ii) 這種情況下一份保單毛利潤(rùn)的數(shù)學(xué)期望估計(jì)值大于(i)中估計(jì)值
【分析】(1)根據(jù)題設(shè)中的數(shù)據(jù)可求賠償次數(shù)不少2的概率;
(2)(ⅰ)設(shè)為賠付金額,則可取,用頻率估計(jì)概率后可求的分布列及數(shù)學(xué)期望,從而可求.
(ⅱ)先算出下一期保費(fèi)的變化情況,結(jié)合(1)的結(jié)果可求,從而即可比較大小得解.
【詳解】(1)設(shè)為“隨機(jī)抽取一單,賠償不少于2次”,
由題設(shè)中的統(tǒng)計(jì)數(shù)據(jù)可得.
(2)(?。┰O(shè)為賠付金額,則可取,
由題設(shè)中的統(tǒng)計(jì)數(shù)據(jù)可得,
,,
,

故(萬(wàn)元).
(ⅱ)由題設(shè)保費(fèi)的變化為,
故(萬(wàn)元),
從而.
2.(2023·全國(guó)新Ⅰ卷·高考真題)甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對(duì)方投籃.無(wú)論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.
(1)求第2次投籃的人是乙的概率;
(2)求第次投籃的人是甲的概率;
(3)已知:若隨機(jī)變量服從兩點(diǎn)分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.
【答案】(1)
(2)
(3)
【分析】(1)根據(jù)全概率公式即可求出;
(2)設(shè),由題意可得,根據(jù)數(shù)列知識(shí),構(gòu)造等比數(shù)列即可解出;
(3)先求出兩點(diǎn)分布的期望,再根據(jù)題中的結(jié)論以及等比數(shù)列的求和公式即可求出.
【詳解】(1)記“第次投籃的人是甲”為事件,“第次投籃的人是乙”為事件,
所以,
.
(2)設(shè),依題可知,,則

即,
構(gòu)造等比數(shù)列,
設(shè),解得,則,
又,所以是首項(xiàng)為,公比為的等比數(shù)列,
即.
(3)因?yàn)?,?br>所以當(dāng)時(shí),,
故.
【點(diǎn)睛】本題第一問直接考查全概率公式的應(yīng)用,后兩問的解題關(guān)鍵是根據(jù)題意找到遞推式,然后根據(jù)數(shù)列的基本知識(shí)求解.
3.(2021·北京·高考真題)在核酸檢測(cè)中, “k合1” 混采核酸檢測(cè)是指:先將k個(gè)人的樣本混合在一起進(jìn)行1次檢測(cè),如果這k個(gè)人都沒有感染新冠病毒,則檢測(cè)結(jié)果為陰性,得到每人的檢測(cè)結(jié)果都為陰性,檢測(cè)結(jié)束:如果這k個(gè)人中有人感染新冠病毒,則檢測(cè)結(jié)果為陽(yáng)性,此時(shí)需對(duì)每人再進(jìn)行1次檢測(cè),得到每人的檢測(cè)結(jié)果,檢測(cè)結(jié)束.
現(xiàn)對(duì)100人進(jìn)行核酸檢測(cè),假設(shè)其中只有2人感染新冠病毒,并假設(shè)每次檢測(cè)結(jié)果準(zhǔn)確.
(I)將這100人隨機(jī)分成10組,每組10人,且對(duì)每組都采用“10合1”混采核酸檢測(cè).
(i)如果感染新冠病毒的2人在同一組,求檢測(cè)的總次數(shù);
(ii)已知感染新冠病毒的2人分在同一組的概率為.設(shè)X是檢測(cè)的總次數(shù),求X的
分布列與數(shù)學(xué)期望E(X).
(II)將這100人隨機(jī)分成20組,每組5人,且對(duì)每組都采用“5合1”混采核酸檢測(cè).設(shè)Y是檢測(cè)的總次數(shù),試判斷數(shù)學(xué)期望E(Y)與(I)中E(X)的大小.(結(jié)論不要求證明)
【答案】(1)①次;②分布列見解析;期望為;(2).
【分析】(1)①由題設(shè)條件還原情境,即可得解;
②求出X的取值情況,求出各情況下的概率,進(jìn)而可得分布列,再由期望的公式即可得解;
(2)求出兩名感染者在一組的概率,進(jìn)而求出,即可得解.
【詳解】(1)①對(duì)每組進(jìn)行檢測(cè),需要10次;再對(duì)結(jié)果為陽(yáng)性的組每個(gè)人進(jìn)行檢測(cè),需要10次;
所以總檢測(cè)次數(shù)為20次;
②由題意,可以取20,30,
,,
則的分布列:
所以;
(2)由題意,可以取25,30,
兩名感染者在同一組的概率為,不在同一組的概率為,
則.
4.(2020·江蘇·高考真題)甲口袋中裝有2個(gè)黑球和1個(gè)白球,乙口袋中裝有3個(gè)白球.現(xiàn)從甲、乙兩口袋中各任取一個(gè)球交換放入另一口袋,重復(fù)n次這樣的操作,記甲口袋中黑球個(gè)數(shù)為Xn,恰有2個(gè)黑球的概率為pn,恰有1個(gè)黑球的概率為qn.
(1)求p1,q1和p2,q2;
(2)求2pn+qn與2pn-1+qn-1的遞推關(guān)系式和Xn的數(shù)學(xué)期望E(Xn)(用 n表示) .
【答案】(1)(2)
【分析】(1)直接根據(jù)操作,根據(jù)古典概型概率公式可得結(jié)果;
(2)根據(jù)操作,依次求,即得遞推關(guān)系,構(gòu)造等比數(shù)列求得,最后根據(jù)數(shù)學(xué)期望公式求結(jié)果.
【詳解】(1),
,
.
(2),
,
因此,
從而,
即.
又的分布列為
故.
【點(diǎn)睛】本題考查古典概型概率、概率中遞推關(guān)系、構(gòu)造法求數(shù)列通項(xiàng)、數(shù)學(xué)期望公式,考查綜合分析求解能力,屬難題.
5.(2019·北京·高考真題)改革開放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
【答案】(Ⅰ) ;
(Ⅱ)見解析;
(Ⅲ)見解析.
【分析】(Ⅰ)由題意利用古典概型計(jì)算公式可得滿足題意的概率值;
(Ⅱ)首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后求解數(shù)學(xué)期望即可.
(Ⅲ)由題意結(jié)合概率的定義給出結(jié)論即可.
【詳解】(Ⅰ)由題意可知,兩種支付方式都是用的人數(shù)為:人,則:
該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率.
(Ⅱ)由題意可知,
僅使用A支付方法的學(xué)生中,金額不大于1000的人數(shù)占,金額大于1000的人數(shù)占,
僅使用B支付方法的學(xué)生中,金額不大于1000的人數(shù)占,金額大于1000的人數(shù)占,
且X可能的取值為0,1,2.
,,,
X的分布列為:
其數(shù)學(xué)期望:.
(Ⅲ)我們不認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化.理由如下:
隨機(jī)事件在一次隨機(jī)實(shí)驗(yàn)中是否發(fā)生是隨機(jī)的,是不能預(yù)知的,隨著試驗(yàn)次數(shù)的增多,頻率越來(lái)越穩(wěn)定于概率.
學(xué)校是一個(gè)相對(duì)消費(fèi)穩(wěn)定的地方,每個(gè)學(xué)生根據(jù)自己的實(shí)際情況每個(gè)月的消費(fèi)應(yīng)該相對(duì)固定,出現(xiàn)題中這種現(xiàn)象可能是發(fā)生了“小概率事件”.
(答案不唯一,小概率事件發(fā)生也可認(rèn)為是人數(shù)發(fā)生了變化)
【點(diǎn)睛】本題以支付方式相關(guān)調(diào)查來(lái)設(shè)置問題,考查概率統(tǒng)計(jì)在生活中的應(yīng)用,考查概率的定義和分布列的應(yīng)用,使學(xué)生體會(huì)到數(shù)學(xué)與現(xiàn)實(shí)生活息息相關(guān).
6.(2018·北京·高考真題)電影公司隨機(jī)收集了電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到下表:
好評(píng)率是指:一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.
假設(shè)所有電影是否獲得好評(píng)相互獨(dú)立.
(Ⅰ)從電影公司收集的電影中隨機(jī)選取1部,求這部電影是獲得好評(píng)的第四類電影的概率;
(Ⅱ)從第四類電影和第五類電影中各隨機(jī)選取1部,估計(jì)恰有1部獲得好評(píng)的概率;
(Ⅲ)假設(shè)每類電影得到人們喜歡的概率與表格中該類電影的好評(píng)率相等,用“”表示第k類電影得到人們喜歡,“”表示第k類電影沒有得到人們喜歡(k=1,2,3,4,5,6).寫出方差,,,,,的大小關(guān)系.
【答案】(1) 概率為0.025
(2) 概率估計(jì)為0.35
(3) >>=>>
【詳解】分析:(1)先根據(jù)頻數(shù)計(jì)算是第四類電影的頻率,再乘以第四類電影好評(píng)率得所求概率,(2) 恰有1部獲得好評(píng)為第四類電影獲得好評(píng)第五類電影沒獲得好評(píng)和第四類電影沒獲得好評(píng)第五類電影獲得好評(píng)這兩個(gè)互斥事件,先利用獨(dú)立事件概率乘法公式分別求兩個(gè)互斥事件的概率,再相加得結(jié)果,(3) 服從0-1分布,因此,即得>>=>>.
詳解:解:(Ⅰ)由題意知,樣本中電影的總部數(shù)是140+50+300+200+800+510=2000,
第四類電影中獲得好評(píng)的電影部數(shù)是200×0.25=50.
故所求概率為.
(Ⅱ)設(shè)事件A為“從第四類電影中隨機(jī)選出的電影獲得好評(píng)”,
事件B為“從第五類電影中隨機(jī)選出的電影獲得好評(píng)”.
故所求概率為P()=P()+P()
=P(A)(1–P(B))+(1–P(A))P(B).
由題意知:P(A)估計(jì)為0.25,P(B)估計(jì)為0.2.
故所求概率估計(jì)為0.25×0.8+0.75×0.2=0.35.
(Ⅲ)>>=>>.
點(diǎn)睛:互斥事件概率加法公式:若A,B互斥,則P(A+B)=P(A)+P(B),獨(dú)立事件概率乘法公式:若A,B相互獨(dú)立,則P(AB)=P(A)P(B).
7.(2018·全國(guó)·高考真題)某工廠的某種產(chǎn)品成箱包裝,每箱件,每一箱產(chǎn)品在交付用戶之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品.檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立.
(1)記件產(chǎn)品中恰有件不合格品的概率為,求的最大值點(diǎn);
(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了件,結(jié)果恰有件不合格品,以(1)中確定的作為的值.已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為元,若有不合格品進(jìn)入用戶手中,則工廠要對(duì)每件不合格品支付元的賠償費(fèi)用.
(i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;
(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?
【答案】(1);(2)(i);(ii)應(yīng)該對(duì)余下的產(chǎn)品作檢驗(yàn).
【分析】(1)方法一:利用獨(dú)立重復(fù)實(shí)驗(yàn)成功次數(shù)對(duì)應(yīng)的概率,求得,之后對(duì)其求導(dǎo),利用導(dǎo)數(shù)在相應(yīng)區(qū)間上的符號(hào),確定其單調(diào)性,從而得到其最大值點(diǎn),這里要注意的條件;
(2)方法一:先根據(jù)第一問的條件,確定出,在解(i)的時(shí)候,先求件數(shù)對(duì)應(yīng)的期望,之后應(yīng)用變量之間的關(guān)系,求得賠償費(fèi)用的期望;在解(ii)的時(shí)候,就通過比較兩個(gè)期望的大小,得到結(jié)果.
【詳解】(1)[方法一]:【通性通法】利用導(dǎo)數(shù)求最值
件產(chǎn)品中恰有件不合格品的概率為.
因此.
令,得.當(dāng)時(shí),;當(dāng)時(shí),.
所以的最大值點(diǎn)為;
[方法二]:【最優(yōu)解】均值不等式
由題可知,20件產(chǎn)品中恰有2件不合格品的概率為.
,當(dāng)且僅當(dāng),即可得所求.
(2)由(1)知,.
(i)令表示余下的件產(chǎn)品中的不合格品件數(shù),依題意知,,即.所以.
(ii)如果對(duì)余下的產(chǎn)品作檢驗(yàn),則這一箱產(chǎn)品所需要的檢驗(yàn)費(fèi)為400元.
由于,故應(yīng)該對(duì)余下的產(chǎn)品作檢驗(yàn).
【整體點(diǎn)評(píng)】(1)方法一:利用導(dǎo)數(shù)求最值,是求函數(shù)最值的通性通法;
方法二:根據(jù)所求式子特征,利用均值不等式求最值,是本題的最優(yōu)解.
8.(2017·全國(guó)·高考真題)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列.
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?
【答案】(1)詳見解析;(2).
【分析】(1)由題意知的可能取值為200,300,500,分別求出相應(yīng)的概率,由此能求出的分布列.
(2)由題意知這種酸奶一天的需求量至多為500瓶,至少為200瓶,只需考慮,根據(jù)和分類討論.
【詳解】
解:(1)由題意知,所有的可能取值為200,300,500,由表格數(shù)據(jù)知
的分布列為
(2)由題意知,這種酸奶一天的需求量至多為500,至少為200,因此只需考慮
當(dāng)時(shí),若最高氣溫不低于25,則2n;
若最高氣溫位于區(qū)間,則1200-2n;
若最高氣溫低于20,則=800-2n
因此
當(dāng)00時(shí),若最高氣溫不低于20,則2n,
若最高氣溫低于20,則=800-2n,
因此160+1.2n
所以時(shí),的數(shù)學(xué)期望達(dá)到最大值,最大值為520元.
9.(2017·江蘇·高考真題)已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n ,n 2),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,……,m+n的抽屜內(nèi),其中第k次取球放入編號(hào)為k的抽屜(k=1,2,3,……,m+n).
(1)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;
(2)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(x)是x的數(shù)學(xué)期望,證明
【答案】(1)(2)見解析
【詳解】試題分析:(1)根據(jù)條件先確定總事件數(shù)為,而編號(hào)為2的抽屜內(nèi)放的是黑球的事件數(shù)為,最后根據(jù)古典概型的概率公式即可求概率;(2)先確定最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù)為,所對(duì)應(yīng)的概率,再根據(jù)數(shù)學(xué)期望公式得,利用性質(zhì),進(jìn)行放縮變形:,最后利用組合數(shù)性質(zhì)化簡(jiǎn),可得結(jié)論.
試題解析:解:(1) 編號(hào)為2的抽屜內(nèi)放的是黑球的概率為: .
(2) 隨機(jī)變量 X 的概率分布為:
隨機(jī)變量 X 的期望為:
.
所以
.
點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟為:
(1)“判斷取值”,即判斷隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;
(2)“探求概率”,即利用排列組合、枚舉法、概率公式(常見的有古典概型公式、幾何概型公式、互斥事件的概率和公式、獨(dú)立事件的概率積公式,以及對(duì)立事件的概率公式等),求出隨機(jī)變量取每個(gè)值時(shí)的概率;
(3)“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;
(4)“求期望值”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望的值,對(duì)于有些實(shí)際問題中的隨機(jī)變量,如果能夠斷定它服從某常見的典型分布(如二項(xiàng)分布),則此隨機(jī)變量的期望可直接利用這種典型分布的期望公式()求得.因此,應(yīng)熟記常見的典型分布的期望公式,可加快解題速度.
10.(2016·全國(guó)·高考真題)某公司計(jì)劃購(gòu)買2臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰,機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500元.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,記X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買2臺(tái)機(jī)器的同時(shí)購(gòu)買的易損零件數(shù).
(1)求X的分布列;
(2)若要求,確定n的最小值;
(3)以購(gòu)買易損零件所需費(fèi)用的期望值為決策依據(jù),在與之中選其一,應(yīng)選用哪個(gè)?
【答案】(1)見解析.
(2)見解析.
(3)見解析.
【分析】(1)由已知得X的可能取值為16,17,18,19,20,21,22,分別求出相應(yīng)的概率,由此能求出X的分布列;(2)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能確定滿足P(X≤n)≥0.5中n的最小值;(3)購(gòu)買零件所用費(fèi)用含兩部分,一部分為購(gòu)買零件的費(fèi)用,另一部分為備件不足時(shí)額外購(gòu)買的費(fèi)用,分別求出n=19時(shí),費(fèi)用的期望和當(dāng)n=20時(shí),費(fèi)用的期望,從而得到買19個(gè)更合適.
【詳解】(1)由柱狀圖并以頻率代替概率可得,一臺(tái)機(jī)器在三年內(nèi)需更換的易損零件數(shù)為8,9,10,11的概率分別為0.2,0.4,0.2,0.2,從而
;

;
;

;

所以的分布列為
(2)由(1)知,,故的最小值為19.
(3)購(gòu)買零件所用費(fèi)用含兩部分,一部分為購(gòu)買零件的費(fèi)用,另一部分為備件不足時(shí)額外購(gòu)買的費(fèi)用.
當(dāng)n=19時(shí),費(fèi)用的期望為:19×200+500×0.2+1000×0.08+1500×0.04=4040;
當(dāng)n=20時(shí),費(fèi)用的期望為:20×200+500×0.08+1000×0.04=4080.
可知當(dāng)時(shí)所需費(fèi)用的期望值小于時(shí)所需費(fèi)用的期望值,故應(yīng)選.
考點(diǎn):離散型隨機(jī)變量及其分布列
11.(2015·山東·高考真題)若n是一個(gè)三位正整數(shù),且n的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如137,359,567等).
在某次數(shù)學(xué)趣味活動(dòng)中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個(gè)數(shù),且只能抽取一次.得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個(gè)數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)寫出所有個(gè)位數(shù)字是5的“三位遞增數(shù)”;
(2)若甲參加活動(dòng),求甲得分X的分布列和數(shù)學(xué)期望E(X).
【答案】(1) 125,135,145,235,245,345;(2) .
【詳解】(1)個(gè)位數(shù)是5的“三位遞增數(shù)”有:125,135,145,235,245,345;
(2)由題意知,全部“三位遞增數(shù)”的個(gè)數(shù)為
隨機(jī)變量X的取值為:0,-1,1,因此
,,
所以X的分布列為
因此.
考點(diǎn)05 條件概率、全概率公式、貝葉斯公式
1.(2023·全國(guó)新Ⅰ卷·高考真題)甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對(duì)方投籃.無(wú)論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.
(1)求第2次投籃的人是乙的概率;
(2)求第次投籃的人是甲的概率;
(3)已知:若隨機(jī)變量服從兩點(diǎn)分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.
【答案】(1)
(2)
(3)
【分析】(1)根據(jù)全概率公式即可求出;
(2)設(shè),由題意可得,根據(jù)數(shù)列知識(shí),構(gòu)造等比數(shù)列即可解出;
(3)先求出兩點(diǎn)分布的期望,再根據(jù)題中的結(jié)論以及等比數(shù)列的求和公式即可求出.
【詳解】(1)記“第次投籃的人是甲”為事件,“第次投籃的人是乙”為事件,
所以,
.
(2)設(shè),依題可知,,則
,
即,
構(gòu)造等比數(shù)列,
設(shè),解得,則,
又,所以是首項(xiàng)為,公比為的等比數(shù)列,
即.
(3)因?yàn)?,?br>所以當(dāng)時(shí),,
故.
【點(diǎn)睛】本題第一問直接考查全概率公式的應(yīng)用,后兩問的解題關(guān)鍵是根據(jù)題意找到遞推式,然后根據(jù)數(shù)列的基本知識(shí)求解.
2.(2022·全國(guó)新Ⅰ卷·高考真題)一醫(yī)療團(tuán)隊(duì)為研究某地的一種地方性疾病與當(dāng)?shù)鼐用竦男l(wèi)生習(xí)慣(衛(wèi)生習(xí)慣分為良好和不夠良好兩類)的關(guān)系,在已患該疾病的病例中隨機(jī)調(diào)查了100例(稱為病例組),同時(shí)在未患該疾病的人群中隨機(jī)調(diào)查了100人(稱為對(duì)照組),得到如下數(shù)據(jù):
(1)能否有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異?
(2)從該地的人群中任選一人,A表示事件“選到的人衛(wèi)生習(xí)慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛(wèi)生習(xí)慣不夠良好對(duì)患該疾病風(fēng)險(xiǎn)程度的一項(xiàng)度量指標(biāo),記該指標(biāo)為R.
(?。┳C明:;
(ⅱ)利用該調(diào)查數(shù)據(jù),給出的估計(jì)值,并利用(ⅰ)的結(jié)果給出R的估計(jì)值.
附,
【答案】(1)答案見解析
(2)(i)證明見解析;(ii);
【分析】(1)由所給數(shù)據(jù)結(jié)合公式求出的值,將其與臨界值比較大小,由此確定是否有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異;(2)(i) 根據(jù)定義結(jié)合條件概率公式即可完成證明;(ii)根據(jù)(i)結(jié)合已知數(shù)據(jù)求.
【詳解】(1)由已知,
又,,
所以有99%的把握認(rèn)為患該疾病群體與未患該疾病群體的衛(wèi)生習(xí)慣有差異.
(2)(i)因?yàn)椋?br>所以
所以,
(ii)
由已知,,
又,,
所以
3.(2022·全國(guó)新Ⅱ卷·高考真題)在某地區(qū)進(jìn)行流行病學(xué)調(diào)查,隨機(jī)調(diào)查了100位某種疾病患者的年齡,得到如下的樣本數(shù)據(jù)的頻率分布直方圖:

(1)估計(jì)該地區(qū)這種疾病患者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)估計(jì)該地區(qū)一位這種疾病患者的年齡位于區(qū)間的概率;
(3)已知該地區(qū)這種疾病的患病率為,該地區(qū)年齡位于區(qū)間的人口占該地區(qū)總?cè)丝诘?從該地區(qū)中任選一人,若此人的年齡位于區(qū)間,求此人患這種疾病的概率.(以樣本數(shù)據(jù)中患者的年齡位于各區(qū)間的頻率作為患者的年齡位于該區(qū)間的概率,精確到0.0001).
【答案】(1)歲;
(2);
(3).
【分析】(1)根據(jù)平均值等于各矩形的面積乘以對(duì)應(yīng)區(qū)間的中點(diǎn)值的和即可求出;
(2)設(shè){一人患這種疾病的年齡在區(qū)間},根據(jù)對(duì)立事件的概率公式即可解出;
(3)根據(jù)條件概率公式即可求出.
【詳解】(1)平均年齡
(歲).
(2)設(shè){一人患這種疾病的年齡在區(qū)間},所以

(3)設(shè)“任選一人年齡位于區(qū)間[40,50)”,“從該地區(qū)中任選一人患這種疾病”,
則由已知得:
,
則由條件概率公式可得
從該地區(qū)中任選一人,若此人的年齡位于區(qū)間,此人患這種疾病的概率為.
考點(diǎn)06 求解數(shù)字樣本特征及應(yīng)用
1.(2023·全國(guó)乙卷·高考真題)某廠為比較甲乙兩種工藝對(duì)橡膠產(chǎn)品伸縮率的處理效應(yīng),進(jìn)行10次配對(duì)試驗(yàn),每次配對(duì)試驗(yàn)選用材質(zhì)相同的兩個(gè)橡膠產(chǎn)品,隨機(jī)地選其中一個(gè)用甲工藝處理,另一個(gè)用乙工藝處理,測(cè)量處理后的橡膠產(chǎn)品的伸縮率.甲、乙兩種工藝處理后的橡膠產(chǎn)品的伸縮率分別記為,.試驗(yàn)結(jié)果如下:
記,記的樣本平均數(shù)為,樣本方差為.
(1)求,;
(2)判斷甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率是否有顯著提高(如果,則認(rèn)為甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率有顯著提高,否則不認(rèn)為有顯著提高)
【答案】(1),;
(2)認(rèn)為甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率有顯著提高.
【分析】(1)直接利用平均數(shù)公式即可計(jì)算出,再得到所有的值,最后計(jì)算出方差即可;
(2)根據(jù)公式計(jì)算出的值,和比較大小即可.
【詳解】(1),
,
,
的值分別為: ,

(2)由(1)知:,,故有,
所以認(rèn)為甲工藝處理后的橡膠產(chǎn)品的伸縮率較乙工藝處理后的橡膠產(chǎn)品的伸縮率有顯著提高.
2.(2021·全國(guó)乙卷·高考真題)某廠研制了一種生產(chǎn)高精產(chǎn)品的設(shè)備,為檢驗(yàn)新設(shè)備生產(chǎn)產(chǎn)品的某項(xiàng)指標(biāo)有無(wú)提高,用一臺(tái)舊設(shè)備和一臺(tái)新設(shè)備各生產(chǎn)了10件產(chǎn)品,得到各件產(chǎn)品該項(xiàng)指標(biāo)數(shù)據(jù)如下:
舊設(shè)備和新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的樣本平均數(shù)分別記為和,樣本方差分別記為和.
(1)求,,,;
(2)判斷新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的均值較舊設(shè)備是否有顯著提高(如果,則認(rèn)為新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的均值較舊設(shè)備有顯著提高,否則不認(rèn)為有顯著提高).
【答案】(1);(2)新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的均值較舊設(shè)備有顯著提高.
【分析】(1)根據(jù)平均數(shù)和方差的計(jì)算方法,計(jì)算出平均數(shù)和方差.
(2)根據(jù)題目所給判斷依據(jù),結(jié)合(1)的結(jié)論進(jìn)行判斷.
【詳解】(1),

,
.
(2)依題意,,,
,所以新設(shè)備生產(chǎn)產(chǎn)品的該項(xiàng)指標(biāo)的均值較舊設(shè)備有顯著提高.
3.(2015·廣東·高考真題)某工廠36名工人年齡數(shù)據(jù)如圖:
(1)用系統(tǒng)抽樣法從36名工人中抽取容量為9的樣本,且在第一分段里用隨機(jī)抽樣法抽到的年齡數(shù)據(jù)為44,列出樣本的年齡數(shù)據(jù);
(2)計(jì)算(1)中樣本的均值和方差s2;
(3)36名工人中年齡在﹣s和+s之間有多少人?所占百分比是多少(精確到0.01%)?
【答案】(1)44,40,36,43,36,37,44,43,37.
(2)平均值40;方差:
(3)23人.63.89%.
【詳解】試題分析:(1)利用系統(tǒng)抽樣的定義進(jìn)行求解即可;
(2)根據(jù)均值和方差公式即可計(jì)算(1)中樣本的均值和方差s2;
(3)求出樣本和方差即可得到結(jié)論.
解:(1)由系統(tǒng)抽樣知,36人分成9組,每組4人,其中第一組的工人年齡為44,所以其編號(hào)為2,
∴所有樣本數(shù)據(jù)的編號(hào)為:4n﹣2,(n=1,2,…,9),
其數(shù)據(jù)為:44,40,36,43,36,37,44,43,37.
(2)由平均值公式得=(44+40+36+43+36+37+44+43+37)=40.
由方差公式得s2=[(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=.
(3)∵s2=.∴s=∈(3,4),
∴36名工人中年齡在﹣s和+s之間的人數(shù)等于區(qū)間[37,43]的人數(shù),
即40,40,41,…,39,共23人.
∴36名工人中年齡在﹣s和+s之間所占百分比為≈63.89%.
點(diǎn)評(píng):本題主要考查統(tǒng)計(jì)和分層抽樣的應(yīng)用,比較基礎(chǔ).
考點(diǎn)07 概率統(tǒng)計(jì)的實(shí)際應(yīng)用與決策問題
1.(2024·全國(guó)甲卷·高考真題)某工廠進(jìn)行生產(chǎn)線智能化升級(jí)改造,升級(jí)改造后,從該工廠甲、乙兩個(gè)車間的產(chǎn)品中隨機(jī)抽取150件進(jìn)行檢驗(yàn),數(shù)據(jù)如下:
(1)填寫如下列聯(lián)表:
能否有的把握認(rèn)為甲、乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異?能否有的把握認(rèn)為甲,乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異?
(2)已知升級(jí)改造前該工廠產(chǎn)品的優(yōu)級(jí)品率,設(shè)為升級(jí)改造后抽取的n件產(chǎn)品的優(yōu)級(jí)品率.如果,則認(rèn)為該工廠產(chǎn)品的優(yōu)級(jí)品率提高了,根據(jù)抽取的150件產(chǎn)品的數(shù)據(jù),能否認(rèn)為生產(chǎn)線智能化升級(jí)改造后,該工廠產(chǎn)品的優(yōu)級(jí)品率提高了?()
附:
【答案】(1)答案見詳解
(2)答案見詳解
【分析】(1)根據(jù)題中數(shù)據(jù)完善列聯(lián)表,計(jì)算,并與臨界值對(duì)比分析;
(2)用頻率估計(jì)概率可得,根據(jù)題意計(jì)算,結(jié)合題意分析判斷.
【詳解】(1)根據(jù)題意可得列聯(lián)表:
可得,
因?yàn)椋?br>所以有的把握認(rèn)為甲、乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異,沒有的把握認(rèn)為甲,乙兩車間產(chǎn)品的優(yōu)級(jí)品率存在差異.
(2)由題意可知:生產(chǎn)線智能化升級(jí)改造后,該工廠產(chǎn)品的優(yōu)級(jí)品的頻率為,
用頻率估計(jì)概率可得,
又因?yàn)樯?jí)改造前該工廠產(chǎn)品的優(yōu)級(jí)品率,
則,
可知,
所以可以認(rèn)為生產(chǎn)線智能化升級(jí)改造后,該工廠產(chǎn)品的優(yōu)級(jí)品率提高了.
2.(2023·全國(guó)新Ⅱ卷·高考真題)某研究小組經(jīng)過研究發(fā)現(xiàn)某種疾病的患病者與未患病者的某項(xiàng)醫(yī)學(xué)指標(biāo)有明顯差異,經(jīng)過大量調(diào)查,得到如下的患病者和未患病者該指標(biāo)的頻率分布直方圖:

利用該指標(biāo)制定一個(gè)檢測(cè)標(biāo)準(zhǔn),需要確定臨界值c,將該指標(biāo)大于c的人判定為陽(yáng)性,小于或等于c的人判定為陰性.此檢測(cè)標(biāo)準(zhǔn)的漏診率是將患病者判定為陰性的概率,記為;誤診率是將未患病者判定為陽(yáng)性的概率,記為.假設(shè)數(shù)據(jù)在組內(nèi)均勻分布,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.
(1)當(dāng)漏診率%時(shí),求臨界值c和誤診率;
(2)設(shè)函數(shù),當(dāng)時(shí),求的解析式,并求在區(qū)間的最小值.
【答案】(1),;
(2),最小值為.
【分析】(1)根據(jù)題意由第一個(gè)圖可先求出,再根據(jù)第二個(gè)圖求出的矩形面積即可解出;
(2)根據(jù)題意確定分段點(diǎn),即可得出的解析式,再根據(jù)分段函數(shù)的最值求法即可解出.
【詳解】(1)依題可知,左邊圖形第一個(gè)小矩形的面積為,所以,
所以,解得:,

(2)當(dāng)時(shí),

當(dāng)時(shí),
,
故,
所以在區(qū)間的最小值為.
3.(2023·北京·高考真題)為研究某種農(nóng)產(chǎn)品價(jià)格變化的規(guī)律,收集得到了該農(nóng)產(chǎn)品連續(xù)40天的價(jià)格變化數(shù)據(jù),如下表所示.在描述價(jià)格變化時(shí),用“+”表示“上漲”,即當(dāng)天價(jià)格比前一天價(jià)格高;用“-”表示“下跌”,即當(dāng)天價(jià)格比前一天價(jià)格低;用“0”表示“不變”,即當(dāng)天價(jià)格與前一天價(jià)格相同.
用頻率估計(jì)概率.
(1)試估計(jì)該農(nóng)產(chǎn)品價(jià)格“上漲”的概率;
(2)假設(shè)該農(nóng)產(chǎn)品每天的價(jià)格變化是相互獨(dú)立的.在未來(lái)的日子里任取4天,試估計(jì)該農(nóng)產(chǎn)品價(jià)格在這4天中2天“上漲”、1天“下跌”、1天“不變”的概率;
(3)假設(shè)該農(nóng)產(chǎn)品每天的價(jià)格變化只受前一天價(jià)格變化的影響.判斷第41天該農(nóng)產(chǎn)品價(jià)格“上漲”“下跌”和“不變”的概率估計(jì)值哪個(gè)最大.(結(jié)論不要求證明)
【答案】(1)
(2)
(3)不變
【分析】(1)計(jì)算表格中的的次數(shù),然后根據(jù)古典概型進(jìn)行計(jì)算;
(2)分別計(jì)算出表格中上漲,不變,下跌的概率后進(jìn)行計(jì)算;
(3)通過統(tǒng)計(jì)表格中前一次上漲,后一次發(fā)生的各種情況進(jìn)行推斷第天的情況.
【詳解】(1)根據(jù)表格數(shù)據(jù)可以看出,天里,有個(gè),也就是有天是上漲的,
根據(jù)古典概型的計(jì)算公式,農(nóng)產(chǎn)品價(jià)格上漲的概率為:
(2)在這天里,有天上漲,天下跌,天不變,也就是上漲,下跌,不變的概率分別是,,,
于是未來(lái)任取天,天上漲,天下跌,天不變的概率是
(3)由于第天處于上漲狀態(tài),從前次的次上漲進(jìn)行分析,上漲后下一次仍上漲的有次,不變的有次,下跌的有次,
因此估計(jì)第次不變的概率最大.
4.(2020·北京·高考真題)某校為舉辦甲、乙兩項(xiàng)不同活動(dòng),分別設(shè)計(jì)了相應(yīng)的活動(dòng)方案:方案一、方案二.為了解該校學(xué)生對(duì)活動(dòng)方案是否支持,對(duì)學(xué)生進(jìn)行簡(jiǎn)單隨機(jī)抽樣,獲得數(shù)據(jù)如下表:
假設(shè)所有學(xué)生對(duì)活動(dòng)方案是否支持相互獨(dú)立.
(Ⅰ)分別估計(jì)該校男生支持方案一的概率、該校女生支持方案一的概率;
(Ⅱ)從該校全體男生中隨機(jī)抽取2人,全體女生中隨機(jī)抽取1人,估計(jì)這3人中恰有2人支持方案一的概率;
(Ⅲ)將該校學(xué)生支持方案二的概率估計(jì)值記為,假設(shè)該校一年級(jí)有500名男生和300名女生,除一年級(jí)外其他年級(jí)學(xué)生支持方案二的概率估計(jì)值記為,試比較與 的大小.(結(jié)論不要求證明)
【答案】(Ⅰ)該校男生支持方案一的概率為,該校女生支持方案一的概率為;
(Ⅱ),(Ⅲ)
【分析】(Ⅰ)根據(jù)頻率估計(jì)概率,即得結(jié)果;
(Ⅱ)先分類,再根據(jù)獨(dú)立事件概率乘法公式以及分類計(jì)數(shù)加法公式求結(jié)果;
(Ⅲ)先求,再根據(jù)頻率估計(jì)概率,即得大小.
【詳解】(Ⅰ)該校男生支持方案一的概率為,
該校女生支持方案一的概率為;
(Ⅱ)3人中恰有2人支持方案一分兩種情況,(1)僅有兩個(gè)男生支持方案一,(2)僅有一個(gè)男生支持方案一,一個(gè)女生支持方案一,
所以3人中恰有2人支持方案一概率為:;
(Ⅲ)
【點(diǎn)睛】本題考查利用頻率估計(jì)概率、獨(dú)立事件概率乘法公式,考查基本分析求解能力,屬基礎(chǔ)題.
5.(2020·全國(guó)·高考真題)某廠接受了一項(xiàng)加工業(yè)務(wù),加工出來(lái)的產(chǎn)品(單位:件)按標(biāo)準(zhǔn)分為A,B,C,D四個(gè)等級(jí).加工業(yè)務(wù)約定:對(duì)于A級(jí)品、B級(jí)品、C級(jí)品,廠家每件分別收取加工費(fèi)90元,50元,20元;對(duì)于D級(jí)品,廠家每件要賠償原料損失費(fèi)50元.該廠有甲、乙兩個(gè)分廠可承接加工業(yè)務(wù).甲分廠加工成本費(fèi)為25元/件,乙分廠加工成本費(fèi)為20元/件.廠家為決定由哪個(gè)分廠承接加工業(yè)務(wù),在兩個(gè)分廠各試加工了100件這種產(chǎn)品,并統(tǒng)計(jì)了這些產(chǎn)品的等級(jí),整理如下:
甲分廠產(chǎn)品等級(jí)的頻數(shù)分布表
乙分廠產(chǎn)品等級(jí)的頻數(shù)分布表
(1)分別估計(jì)甲、乙兩分廠加工出來(lái)的一件產(chǎn)品為A級(jí)品的概率;
(2)分別求甲、乙兩分廠加工出來(lái)的100件產(chǎn)品的平均利潤(rùn),以平均利潤(rùn)為依據(jù),廠家應(yīng)選哪個(gè)分廠承接加工業(yè)務(wù)?
【答案】(1)甲分廠加工出來(lái)的級(jí)品的概率為,乙分廠加工出來(lái)的級(jí)品的概率為;(2)選甲分廠,理由見解析.
【分析】(1)根據(jù)兩個(gè)頻數(shù)分布表即可求出;
(2)根據(jù)題意分別求出甲乙兩廠加工件產(chǎn)品的總利潤(rùn),即可求出平均利潤(rùn),由此作出選擇.
【詳解】(1)由表可知,甲廠加工出來(lái)的一件產(chǎn)品為級(jí)品的概率為,乙廠加工出來(lái)的一件產(chǎn)品為級(jí)品的概率為;
(2)甲分廠加工件產(chǎn)品的總利潤(rùn)為元,
所以甲分廠加工件產(chǎn)品的平均利潤(rùn)為元每件;
乙分廠加工件產(chǎn)品的總利潤(rùn)為
元,
所以乙分廠加工件產(chǎn)品的平均利潤(rùn)為元每件.
故廠家選擇甲分廠承接加工任務(wù).
【點(diǎn)睛】本題主要考查古典概型的概率公式的應(yīng)用,以及平均數(shù)的求法,并根據(jù)平均值作出決策,屬于基礎(chǔ)題.
6.(2019·北京·高考真題)改革開放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
(Ⅰ)從全校學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率;
(Ⅱ)從樣本僅使用A和僅使用B的學(xué)生中各隨機(jī)抽取1人,以X表示這2人中上個(gè)月支付金額大于1000元的人數(shù),求X的分布列和數(shù)學(xué)期望;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒有變化.現(xiàn)從樣本僅使用A的學(xué)生中,隨機(jī)抽查3人,發(fā)現(xiàn)他們本月的支付金額都大于2000元.根據(jù)抽查結(jié)果,能否認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說明理由.
【答案】(Ⅰ) ;
(Ⅱ)見解析;
(Ⅲ)見解析.
【分析】(Ⅰ)由題意利用古典概型計(jì)算公式可得滿足題意的概率值;
(Ⅱ)首先確定X可能的取值,然后求得相應(yīng)的概率值可得分布列,最后求解數(shù)學(xué)期望即可.
(Ⅲ)由題意結(jié)合概率的定義給出結(jié)論即可.
【詳解】(Ⅰ)由題意可知,兩種支付方式都是用的人數(shù)為:人,則:
該學(xué)生上個(gè)月A,B兩種支付方式都使用的概率.
(Ⅱ)由題意可知,
僅使用A支付方法的學(xué)生中,金額不大于1000的人數(shù)占,金額大于1000的人數(shù)占,
僅使用B支付方法的學(xué)生中,金額不大于1000的人數(shù)占,金額大于1000的人數(shù)占,
且X可能的取值為0,1,2.
,,,
X的分布列為:
其數(shù)學(xué)期望:.
(Ⅲ)我們不認(rèn)為樣本僅使用A的學(xué)生中本月支付金額大于2000元的人數(shù)有變化.理由如下:
隨機(jī)事件在一次隨機(jī)實(shí)驗(yàn)中是否發(fā)生是隨機(jī)的,是不能預(yù)知的,隨著試驗(yàn)次數(shù)的增多,頻率越來(lái)越穩(wěn)定于概率.
學(xué)校是一個(gè)相對(duì)消費(fèi)穩(wěn)定的地方,每個(gè)學(xué)生根據(jù)自己的實(shí)際情況每個(gè)月的消費(fèi)應(yīng)該相對(duì)固定,出現(xiàn)題中這種現(xiàn)象可能是發(fā)生了“小概率事件”.
(答案不唯一,小概率事件發(fā)生也可認(rèn)為是人數(shù)發(fā)生了變化)
【點(diǎn)睛】本題以支付方式相關(guān)調(diào)查來(lái)設(shè)置問題,考查概率統(tǒng)計(jì)在生活中的應(yīng)用,考查概率的定義和分布列的應(yīng)用,使學(xué)生體會(huì)到數(shù)學(xué)與現(xiàn)實(shí)生活息息相關(guān).
7.(2019·全國(guó)·高考真題)為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進(jìn)行如下試驗(yàn):將200只小鼠隨機(jī)分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時(shí)間后用某種科學(xué)方法測(cè)算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗(yàn)數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內(nèi)的百分比不低于”,根據(jù)直方圖得到的估計(jì)值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計(jì)甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
【答案】(1) ,;(2) ,.
【分析】(1)由及頻率和為1可解得和的值;(2)根據(jù)公式求平均數(shù).
【詳解】(1)由題得,解得,由,解得.
(2)由甲離子的直方圖可得,甲離子殘留百分比的平均值為,
乙離子殘留百分比的平均值為
【點(diǎn)睛】本題考查頻率分布直方圖和平均數(shù),屬于基礎(chǔ)題.
8.(2018·全國(guó)·高考真題)某家庭記錄了未使用節(jié)水龍頭天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
未使用節(jié)水龍頭天的日用水量頻數(shù)分布表
使用了節(jié)水龍頭天的日用水量頻數(shù)分布表
(1)作出使用了節(jié)水龍頭天的日用水量數(shù)據(jù)的頻率分布直方圖:
(2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于的概率;
(3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)
【答案】(1)直方圖見解析;(2);(3).
【分析】(1)根據(jù)題中所給的使用了節(jié)水龍頭天的日用水量頻數(shù)分布表,算出落在相應(yīng)區(qū)間上的頻率,借助于直方圖中長(zhǎng)方形的面積表示的就是落在相應(yīng)區(qū)間上的頻率,從而確定出對(duì)應(yīng)矩形的高,從而得到直方圖;
(2)結(jié)合直方圖,算出日用水量小于的矩形的面積總和,即為所求的頻率;
(3)根據(jù)組中值乘以相應(yīng)的頻率作和求得天日用水量的平均值,作差乘以天得到一年能節(jié)約用水多少,從而求得結(jié)果.
【詳解】(1)頻率分布直方圖如下圖所示:
(2)根據(jù)以上數(shù)據(jù),該家庭使用節(jié)水龍頭后天日用水量小于的頻率為
;
因此該家庭使用節(jié)水龍頭后日用水量小于的概率的估計(jì)值為;
(3)該家庭未使用節(jié)水龍頭天日用水量的平均數(shù)為

該家庭使用了節(jié)水龍頭后50天日用水量的平均數(shù)為.
估計(jì)使用節(jié)水龍頭后,一年可節(jié)省水.
【點(diǎn)睛】該題考查的是有關(guān)統(tǒng)計(jì)的問題,涉及到的知識(shí)點(diǎn)有頻率分布直方圖的繪制、利用頻率分布直方圖計(jì)算變量落在相應(yīng)區(qū)間上的概率、利用頻率分布直方圖求平均數(shù),在解題的過程中,需要認(rèn)真審題,細(xì)心運(yùn)算,仔細(xì)求解,就可以得出正確結(jié)果.
9.(2017·北京·高考真題)為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥.一段時(shí)間后,記錄了兩組患者的生理指標(biāo)x和y的數(shù)據(jù),并制成下圖,其中“*”表示服藥者,“+”表示未服藥者.

(Ⅰ)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)y的值小于60的概率;
(Ⅱ)從圖中A,B,C,D四人中隨機(jī)選出兩人,記為選出的兩人中指標(biāo)x的值大于1.7的人數(shù),求的分布列和數(shù)學(xué)期望E();
(Ⅲ)試判斷這100名患者中服藥者指標(biāo)y數(shù)據(jù)的方差與未服藥者指標(biāo)y數(shù)據(jù)的方差的大小.(只需寫出結(jié)論)
【答案】(1)0.3(2)見解析(3)服藥者指標(biāo)數(shù)據(jù)的方差大于未服藥者指標(biāo)數(shù)據(jù)的方差.
【詳解】(Ⅰ)由圖知,在服藥的50名患者中,指標(biāo)的值小于60的有15人,
所以從服藥的50名患者中隨機(jī)選出一人,此人指標(biāo)的值小于60的概率為.
(Ⅱ)由圖知,A,B,C,D四人中,指標(biāo)的值大于1.7的有2人:A和C.
所以的所有可能取值為0,1,2.
.
所以的分布列為
故的期望.
(Ⅲ)在這100名患者中,服藥者指標(biāo)數(shù)據(jù)的方差大于未服藥者指標(biāo)數(shù)據(jù)的方差.
【名師點(diǎn)睛】求分布列的三種方法:
(1)由統(tǒng)計(jì)數(shù)據(jù)得到離散型隨機(jī)變量的分布列;
(2)由古典概型求出離散型隨機(jī)變量的分布列;
(3)由互斥事件的概率、相互獨(dú)立事件同時(shí)發(fā)生的概率及n次獨(dú)立重復(fù)試驗(yàn)有k次發(fā)生的概率求離散型隨機(jī)變量的分布列.
10.(2016·四川·高考真題)我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由.
【答案】(1);(2)萬(wàn);(3).
【詳解】試題分析:本題主要考查頻率分布直方圖、頻率、頻數(shù)的計(jì)算等基礎(chǔ)知識(shí),考查學(xué)生的分析問題、解決問題的能力. 第(1)問,由高×組距=頻率,計(jì)算每組的頻率,根據(jù)所有頻率之和為1,計(jì)算出a的值;第(2)問,利用高×組距=頻率,先計(jì)算出每人月均用水量不低于3噸的頻率,再利用頻率×樣本容量=頻數(shù),計(jì)算所求人數(shù);第(3)問,將前6組的頻率之和與前5組的頻率之和進(jìn)行比較,得出2.5≤x0.85,
而前5組的頻率之和為0.04+0.08+0.15+0.20+0.26=0.73

相關(guān)試卷

近十年(2015-2024)高考數(shù)學(xué)真題分項(xiàng)匯編專題25新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)(Word版附解析):

這是一份近十年(2015-2024)高考數(shù)學(xué)真題分項(xiàng)匯編專題25新定義綜合(數(shù)列新定義、函數(shù)新定義、集合新定義及其他新定義)(Word版附解析),文件包含十年2015-2024高考真題分項(xiàng)匯編數(shù)學(xué)專題25新定義綜合數(shù)列新定義函數(shù)新定義集合新定義及其他新定義Word版含解析docx、十年2015-2024高考真題分項(xiàng)匯編數(shù)學(xué)專題25新定義綜合數(shù)列新定義函數(shù)新定義集合新定義及其他新定義Word版無(wú)答案docx等2份試卷配套教學(xué)資源,其中試卷共52頁(yè), 歡迎下載使用。

專題22 概率統(tǒng)計(jì)及數(shù)字特征大題綜合- 十年(2015-2024)高考真題數(shù)學(xué)分項(xiàng)匯編(全國(guó)通用):

這是一份專題22 概率統(tǒng)計(jì)及數(shù)字特征大題綜合- 十年(2015-2024)高考真題數(shù)學(xué)分項(xiàng)匯編(全國(guó)通用),文件包含專題22概率統(tǒng)計(jì)及數(shù)字特征大題綜合教師卷-十年2015-2024高考真題數(shù)學(xué)分項(xiàng)匯編全國(guó)通用docx、專題22概率統(tǒng)計(jì)及數(shù)字特征大題綜合學(xué)生卷-十年2015-2024高考真題數(shù)學(xué)分項(xiàng)匯編全國(guó)通用docx等2份試卷配套教學(xué)資源,其中試卷共110頁(yè), 歡迎下載使用。

專題06 統(tǒng)計(jì)與數(shù)字特征小題綜合- 十年(2015-2024)高考真題數(shù)學(xué)分項(xiàng)匯編(全國(guó)通用):

這是一份專題06 統(tǒng)計(jì)與數(shù)字特征小題綜合- 十年(2015-2024)高考真題數(shù)學(xué)分項(xiàng)匯編(全國(guó)通用),文件包含專題06統(tǒng)計(jì)與數(shù)字特征小題綜合教師卷-十年2015-2024高考真題數(shù)學(xué)分項(xiàng)匯編全國(guó)通用docx、專題06統(tǒng)計(jì)與數(shù)字特征小題綜合學(xué)生卷-十年2015-2024高考真題數(shù)學(xué)分項(xiàng)匯編全國(guó)通用docx等2份試卷配套教學(xué)資源,其中試卷共27頁(yè), 歡迎下載使用。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

十年高考數(shù)學(xué)真題分項(xiàng)匯編(2014-2023)(理科)專題18概率統(tǒng)計(jì)選擇題(理科)(Word版附解析)

十年高考數(shù)學(xué)真題分項(xiàng)匯編(2014-2023)(理科)專題18概率統(tǒng)計(jì)選擇題(理科)(Word版附解析)

十年高考數(shù)學(xué)真題分項(xiàng)匯編(2014-2023)(文科)專題17概率統(tǒng)計(jì)選擇題(文科)(Word版附解析)

十年高考數(shù)學(xué)真題分項(xiàng)匯編(2014-2023)(文科)專題17概率統(tǒng)計(jì)選擇題(文科)(Word版附解析)

十年高考數(shù)學(xué)真題分項(xiàng)匯編(2014-2023)(文科)專題18概率統(tǒng)計(jì)填空題(文科)(Word版附解析)

十年高考數(shù)學(xué)真題分項(xiàng)匯編(2014-2023)(文科)專題18概率統(tǒng)計(jì)填空題(文科)(Word版附解析)

2021-2023年高考數(shù)學(xué)真題分項(xiàng)匯編專題14概率與統(tǒng)計(jì)(文)(全國(guó)通用)(Word版附解析)

2021-2023年高考數(shù)學(xué)真題分項(xiàng)匯編專題14概率與統(tǒng)計(jì)(文)(全國(guó)通用)(Word版附解析)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部