數(shù)學(xué)(理科)試題
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,其中第Ⅱ卷解答題又分必考題和選考題兩部分,選考題為二選一.考生作答時(shí),將所有答案寫在答題卡上,在本試卷上答題無(wú)效、本試卷滿分150分,考試時(shí)間120分鐘.
注意事項(xiàng):
1.答題前,務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡規(guī)定的位置上.
2.選擇題答案使用2B鉛筆填涂,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào);非選擇題答案使用0.5毫米的黑色中性(簽字)筆或碳素筆書寫,書寫要工整、筆跡清楚,將答案書寫在答題卡規(guī)定的位置上.
3.所有題目必須在答題卡上作答,在試卷上答題無(wú)效.
第Ⅰ卷(選擇題共60分)
一、選擇題:本題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)是符合題目要求的.
1.設(shè)集合,則( )
A.B.C.D.
2.已知復(fù)數(shù)是的共軛復(fù)數(shù),則( )
A.2B.3C.D.
3.已知向量與共線,則( )
A.B.C.D.
4.某單位職工參加某APP推出的“二十大知識(shí)問(wèn)答競(jìng)賽”活動(dòng),參與者每人每天可以作答三次,每次作答20題,每題答對(duì)得5分,答錯(cuò)得0分,該單位從職工中隨機(jī)抽取了10位,他們一天中三次作答的得分情況如圖:根據(jù)圖,估計(jì)該單位職工答題情況,則下列說(shuō)法正確的是( )(從上到下分別為第三、二、一次作答得分情況)
A.該單位職工一天中各次作答的平均分保持一致
B.該單位職工一天中各次作答的正確率保持一致
C.該單位職工一天中第三次作答得分的標(biāo)準(zhǔn)差小于第一次的標(biāo)準(zhǔn)差
D.該單位職工一天中第三次作答得分的極差小于第二次的極差
5.已知函數(shù)為偶函數(shù),則( )
A.B.C.D.1
6.過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,則( )
A.B.C.D.
7.一個(gè)邊長(zhǎng)為的正方形鐵片,把圖中所示的陰影部分截下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)叫正四棱錐形容器,則這個(gè)容器側(cè)棱與底面的夾角正切值為( )
A.B.C.D.
8.若函數(shù)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
9.已知雙曲線的左、右頂點(diǎn)分別為A、B,點(diǎn)在上,是等腰三角形,且外接圓面積為,則雙曲線的離心率為( )
A.B.2C.D.
10.與都是邊長(zhǎng)為2的正三角形,沿公共邊AB折疊成的二面角,若點(diǎn)A,B,C,D在同一球的球面上,則球的表面積為( )
A.B.C.D.
11.已知函數(shù),則下列結(jié)論正確的是( )
A.在區(qū)間單調(diào)遞增
B.的圖象關(guān)于直線對(duì)稱
C.的值域?yàn)?br>D.若關(guān)于的方程在區(qū)間有實(shí)數(shù)根,則所有根之和組成的集合為
12.?dāng)?shù)學(xué)中的數(shù)形結(jié)合可以組成世間萬(wàn)物的絢麗畫面,優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結(jié)論正確的是( )
(1)方程,表示的曲線在第二和第四象限;
(2)曲線上任一點(diǎn)到坐標(biāo)原點(diǎn)的距離都不超過(guò)1;
(3)曲線構(gòu)成的四葉玫瑰線面積大于;
(4)曲線上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(2)
第Ⅱ卷(非選擇題共90分)
二、填空題:本題共4小題,每小題5分,滿分20分.
13.圍棋起源于中國(guó),據(jù)先秦典籍《世本》記載:“堯造圍棋,丹朱善之”,圍棋至今已有四千多年歷史,蘊(yùn)含著中華文化的豐富內(nèi)涵.在某次國(guó)際比賽中,中國(guó)派出包含甲、乙在內(nèi)的5位棋手參加比賽,他們分成三個(gè)小組,則甲和乙在同一個(gè)小組的概率為______.
14.拋物線過(guò)點(diǎn),則點(diǎn)到拋物線準(zhǔn)線的距離為______.
15.在中,角,,所對(duì)的邊分別為,,,其中為銳角,的外接圓半徑為,且滿足,則邊等于______.
16.已知函數(shù)在上只有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為______.
三、解答題:共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.第17~21題為必考題,每個(gè)試題考生都必須作答.第22、23題為選考題,考生根據(jù)要求作答.
(一)必考題:共60分,每題滿分12分.
17.某學(xué)校為增強(qiáng)實(shí)力與影響力,大力招攬名師、建設(shè)校園硬件設(shè)施,近5年該校招生人數(shù)的數(shù)據(jù)如下表:
(1)由表中數(shù)據(jù)可看出,可用線性回歸模型擬合與的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以證明;
(2)求關(guān)于的回歸直線方程,并預(yù)測(cè)當(dāng)年份序號(hào)為7時(shí)該校的招生人數(shù).
參考數(shù)據(jù):.
參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.
18.已知數(shù)列是公差不為0的等差數(shù)列,,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前2024項(xiàng)和.
19.如圖,在三棱柱中,與的距離為,.
(1)證明:平面平面;
(2)若點(diǎn)在棱上,求直線與平面所成角的正弦值的最大值.
20.已知橢圓和圓經(jīng)過(guò)的右焦點(diǎn),點(diǎn),為的右頂點(diǎn)和上頂點(diǎn),原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)設(shè),是橢圓的左、右頂點(diǎn),過(guò)的直線交于,兩點(diǎn)(其中點(diǎn)在軸上方),求與的面積之比的取值范圍.
21.已知函數(shù),
(1)當(dāng)時(shí),求的單調(diào)遞增區(qū)間;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)令函數(shù),求證:.
(二)選考題:共10分,請(qǐng)考生在第22、23題中任選一題作答.若多做,則按所做的第一題計(jì)分,作答時(shí)請(qǐng)先涂題號(hào).
22.在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的普通方程,和曲線的直角坐標(biāo)方程;
(2)若曲線和共有四個(gè)不同交點(diǎn),求的取值范圍.
23.已知函數(shù).
(1)若,求不等式的解集;
(2)若關(guān)于的不等式在在[1,2]上恒成立,求實(shí)數(shù)的取值范圍.
2024年寶雞市高考模擬檢測(cè)(三)
數(shù)學(xué)(理科)參考答案
一、選擇題:本題共12小題,每小題5分,滿分60分.
二、填空題:本題共4小題,每小題5分,滿分20分.
13.14.15.16.
三、解答題:共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.第17-21題為必考題,每個(gè)試題考生都必須作答.第22、23題為選考題,考生根據(jù)要求作答.
(一)必考題:共60分.
17.【詳解】(1)由題意知,,
所以
因?yàn)榕cl非常接近,故可用線性回歸模型擬合與的關(guān)系.
(2),
,
所以關(guān)于的回歸直線方程為.
當(dāng)時(shí),,由此預(yù)測(cè)當(dāng)年份序號(hào)為7時(shí)該校的招生人數(shù)為2.8千人。
18.【詳解】(1)設(shè)等差數(shù)列的公差為,由題意可知,
.解得,所以;
(2)由(1)可知,,
對(duì)于任意,有,
所以,
故數(shù)列的前2024項(xiàng)和為.
19.【詳解】(1)
(1)取棱中點(diǎn)D,連接,因?yàn)?,所?br>因?yàn)槿庵?,所以,所以,所?br>因?yàn)椋?,?br>因?yàn)椋?,所以,同理?br>因?yàn)?,且平面,所以平面?br>因?yàn)槠矫?,所以平面平面?br>(2)
取中點(diǎn),連接,取中點(diǎn),連接,則,
由(1)知平面,所以平面因?yàn)槠矫?,平面,所以?br>因?yàn)?,則
以為坐標(biāo)原點(diǎn),,,所在的直線為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,
可設(shè)點(diǎn),
,
設(shè)面的法向量為,得,
取,則,所以
設(shè)直線與平面所成角為,

若,則,
若,則,
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以直線與平面所成角的正弦值的最大值.
20.【詳解】(1)設(shè)橢圓焦距為,
由題意可得,有①
又因?yàn)橹本€方程為
所以②
聯(lián)立①②解得:,
故橢圓方程為
(2)①當(dāng)斜率不存在時(shí),易知;
(2)當(dāng)斜率存在時(shí),設(shè),,
由,得,顯然,
所以,
因?yàn)?,?br>所以,
因?yàn)?,又,設(shè),則,解得且,
所以,
綜上可得的取值范圍為.
21.【詳解】:(1)由得
當(dāng),時(shí),,
所以,的單調(diào)遞增區(qū)間是
(2)不等式恒成立等價(jià)于在上恒成立,
令,則由可得,
可以看作是關(guān)于的一次函數(shù),單調(diào)遞增,
令,對(duì)于,恒成立.
只需證明即可.
①當(dāng),
則,在上單調(diào)遞減,又,
所以此時(shí)恒成立.
②當(dāng)時(shí),恒成立,所以在上單調(diào)遞增,又,所以此時(shí)恒成立.
③當(dāng)時(shí),單調(diào)遞增,
,所以在上存在唯一的,使得,
當(dāng)時(shí),,當(dāng)時(shí),,
所以在時(shí)單調(diào)遞減,在時(shí)單調(diào)遞增.
恒成立,故恒成立,

(3)由(2)可知
令,,,
可得到,
從而,
即得證.
22.【詳解】(1)曲線的普通方程為,表示一個(gè)以為圓心,2為半徑的圓:
曲線的極坐標(biāo)方程可化為,故對(duì)應(yīng)的直角坐標(biāo)方程為.
(2)將兩方程聯(lián)立得得,
由于兩方程表示的曲線均關(guān)于軸對(duì)稱,所以只要關(guān)于的方程有兩個(gè)大于0的不等實(shí)根,
即代表兩個(gè)曲線有4個(gè)不同交點(diǎn),因此有
解得.
23.【詳解】(1)因?yàn)椋?br>當(dāng)時(shí),可化為,解得,
當(dāng)時(shí),可化為,無(wú)解,
當(dāng)時(shí),可化為,解得,
綜上:不等式解集為;
(2)因?yàn)樵赱1,2]上恒成立,即在[1,2]上恒成立,因?yàn)?,所以?br>故原不等式可化為,
即或,即或,所以只需或,
因?yàn)?,所,所以.年份序?hào)x
1
2
3
4
5
招生人數(shù)y/千人
0.8
1
1.3
1.7
2.2
1
2
3
4
5
6
7
8
9
10
11
12
A
D
B
C
B
C
D
A
A
C
B
D

相關(guān)試卷

2024寶雞高三下學(xué)期三??荚嚁?shù)學(xué)(文)含答案:

這是一份2024寶雞高三下學(xué)期三??荚嚁?shù)學(xué)(文)含答案,共10頁(yè)。試卷主要包含了已知函數(shù)為偶函數(shù),則等內(nèi)容,歡迎下載使用。

陜西省寶雞市2024屆高三下學(xué)期三??荚嚁?shù)學(xué)(理)試卷(Word版附答案):

這是一份陜西省寶雞市2024屆高三下學(xué)期三模考試數(shù)學(xué)(理)試卷(Word版附答案),共11頁(yè)。試卷主要包含了已知函數(shù)為偶函數(shù),則等內(nèi)容,歡迎下載使用。

2024呼和浩特高三下學(xué)期二??荚嚁?shù)學(xué)(理)含答案:

這是一份2024呼和浩特高三下學(xué)期二??荚嚁?shù)學(xué)(理)含答案,共10頁(yè)。試卷主要包含了本試卷分第Ⅰ卷兩部分,已知,則,1024的所有正因數(shù)之和為,設(shè),則的大小關(guān)系為等內(nèi)容,歡迎下載使用。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

2024漢中高三下學(xué)期二??荚嚁?shù)學(xué)(理)含答案

2024漢中高三下學(xué)期二??荚嚁?shù)學(xué)(理)含答案

2024寶雞高三下學(xué)期高考模擬檢測(cè)(二)數(shù)學(xué)(理)含答案

2024寶雞高三下學(xué)期高考模擬檢測(cè)(二)數(shù)學(xué)(理)含答案

2023寶雞高三下學(xué)期二模數(shù)學(xué)(理)試題含答案

2023寶雞高三下學(xué)期二模數(shù)學(xué)(理)試題含答案

2022寶雞高三下學(xué)期三??荚嚁?shù)學(xué)(理)試題含答案

2022寶雞高三下學(xué)期三模考試數(shù)學(xué)(理)試題含答案

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來(lái)到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過(guò)期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部