第Ⅰ卷
一、選擇題(本大題共10個(gè)小題,每小題3分,共30分.在每個(gè)小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求,請(qǐng)選出并在答題卡上將該項(xiàng)涂黑)
第Ⅱ卷
二、填空題(本大題共6小題,每小題3分,共18分)
11.2
12.72
13.
14.
4
3
三、解答題(本大題共8個(gè)小題,共72分.解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.【答案】(1);(2)
【分析】本題考查了實(shí)數(shù)的運(yùn)算以及解一元一次不等式;
(1)分別根據(jù)零指數(shù)冪的定義,絕對(duì)值的性質(zhì)以及二次根式的性質(zhì),計(jì)算即可;
(2)不等式去括號(hào),移項(xiàng),合并同類項(xiàng),化系數(shù)為1即可.
【詳解】(1)原式
;·························································3分
(2),
去括號(hào),得,
移項(xiàng),得,
合并同類項(xiàng),得.························································6分
18.【答案】錯(cuò)誤步驟的序號(hào)為①,解法見詳解.
【分析】本題考查檢查解分式方程;錯(cuò)誤步驟的序號(hào)為①,解方程去分母轉(zhuǎn)化為整式方程,,進(jìn)而解這個(gè)整式方程,最后檢驗(yàn),即可求解.
【詳解】解:錯(cuò)誤步驟的序號(hào)為①,························································1分
去分母得:
去括號(hào)得:
移項(xiàng)得:…③,
合并同類項(xiàng)得:…④,························································3分
檢驗(yàn):當(dāng)時(shí),,························································5分
∴是原分式方程的解.························································6分
19.【答案】(1)見解析
(2),
(3)二,理由見解析
【分析】本題考查統(tǒng)計(jì)圖分析,涉及中位數(shù)、加權(quán)平均數(shù)、眾數(shù),
(1)根據(jù)這30名學(xué)生第一次競(jìng)賽成績和第二次競(jìng)賽成績得分情況統(tǒng)計(jì)圖可得橫坐標(biāo)是89,縱坐標(biāo)是90的點(diǎn)即代表小松同學(xué)的點(diǎn);
(2)根據(jù)平均數(shù)和中位數(shù)的定義可得m和n的值;
(3)根據(jù)平均數(shù),眾數(shù)和中位數(shù)進(jìn)行決策即可.
【詳解】(1)解:(1)如圖所示.
·······························2分
(2),
∵第二次競(jìng)賽獲卓越獎(jiǎng)的學(xué)生有16人,成績從小到大排列為:
90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98,
∴第一和第二個(gè)數(shù)是30名學(xué)生成績中第15和第16個(gè)數(shù),
∴,
∴,;························································6分
(3)可以推斷出第二次競(jìng)賽中初三年級(jí)全體學(xué)生的成績水平較高,
理由是:第二次競(jìng)賽學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)都高于第一次競(jìng)賽.
答:二,第二次競(jìng)賽學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)都高于第一次競(jìng)賽.·············8分
20.【答案】任務(wù)1:剪掉的正方形的邊長為.
任務(wù)2:當(dāng)剪掉的正方形的邊長為時(shí),長方形盒子的側(cè)面積最大為.
【分析】此題主要考查了一元二次方程和二次函數(shù)的應(yīng)用,找到關(guān)鍵描述語,找到等量關(guān)系準(zhǔn)確地列出方程和函數(shù)關(guān)系式是解決問題的關(guān)鍵.
任務(wù)1:假設(shè)剪掉的正方形的邊長為,根據(jù)長方形盒子的底面積為,得方程,解所列方程并檢驗(yàn)可得;
任務(wù)2:側(cè)面積有最大值,設(shè)剪掉的正方形邊長為,盒子的側(cè)面積為,利用長方形盒子的側(cè)面積為:得出即可.
【詳解】解:任務(wù)1:設(shè)剪掉的正方形的邊長為,
則,即,
解得(不合題意,舍去),,
答:剪掉的正方形的邊長為.························································3分
任務(wù)2:側(cè)面積有最大值.
理由如下:
設(shè)剪掉的小正方形的邊長為,盒子的側(cè)面積為,
則與的函數(shù)關(guān)系為:,
即,
即,························································6分
∴時(shí),.························································8分
即當(dāng)剪掉的正方形的邊長為時(shí),長方形盒子的側(cè)面積最大為.
21.【答案】(1)支點(diǎn)C離桌面l的高度;
(2)面板上端E離桌面l的高度是增加了,增加了約
【分析】(1)作,先在求出的長,再計(jì)算即可得答案;
(2)分別求出時(shí) 和時(shí),的長,相減即可.
【詳解】(1)解:如下圖,作,
,
,
,

支點(diǎn)C離桌面l的高度;···············································4分
(2)
,
,
當(dāng)時(shí),,························································5分
當(dāng)時(shí),,························································6分
,
面板上端E離桌面l的高度是增加了,增加了約.···································10分
【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是作輔助線,構(gòu)造直角三角形.
22.【答案】(1)
(2)
(3)
【分析】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì)等知識(shí)點(diǎn),掌握相似三角形判定定理的內(nèi)容是解題關(guān)鍵.
(1)證可得,結(jié)合即可求解;
(2)由可得,進(jìn)一步可得,據(jù)此即可求解;
(3)由(1)可得,證得即可求解.
【詳解】(1)解:由題意得:


即:
解得:························································2分
(2)解:∵,

∴························································3分
由(1)可得:


∵,
∴························································5分
解得:························································6分
(3)解:由(1)得:
即:
解得:························································7分
∵,


即:

整理得:························································8分

∴,


故:························································10分
23.【答案】(1)120
(2)2
(3)
(4)見解析,
【分析】本題主要考查了垂徑定理在圓中的應(yīng)用,最后一問由“共頂點(diǎn),等線段”聯(lián)想到旋轉(zhuǎn),是此題的突破口,同時(shí),要注意頂角為的等腰三角形腰和底邊比是固定值.
(1)由已知得到垂直平分,故得到,證明為等邊三角形即可得到答案;
(2)由于直徑,根據(jù)垂徑定理可以得到是的中點(diǎn),要求最大值即求最大值,當(dāng)為直徑時(shí),有最大值,即可得到答案;
(3)根據(jù)垂徑定理得到,證明,由(1)得,即可得到答案;
(4)將繞A點(diǎn)順時(shí)針旋轉(zhuǎn)至,得到,證明,過A作于G,則,根據(jù)勾股定理證明.
【詳解】(1)解:連接,,
、,
,
,
,
,
,
,
,
的度數(shù)為;························································2分
(2)解:由題可知,為直徑,且,
由垂徑定理可得,,
連接,
是的中點(diǎn),
,
當(dāng)三點(diǎn)共線時(shí),此時(shí)取得最大值,
且,
的最大值為;························································4分
(3)解:連接,
,
,
,
平分,

,

,
,

; ························································6分
(4)證明:由題可得,直徑,
垂直平分,
如圖4,連接,,則,
由(1)得,
將繞A點(diǎn)順時(shí)針旋轉(zhuǎn)至,
,
,,
四邊形為圓內(nèi)接四邊形,
,

、D、P三點(diǎn)共線,
,························································7分
過A作于G,則,
,
在中,,
設(shè),則,

,························································8分

,························································10分
為定值.
························································12分
24.【答案】(1);
(2)①,;②的最小值為.
【分析】(1)將點(diǎn)、的坐標(biāo)代入拋物線,利用待定系數(shù)法求得解析式;
(2)①由坐標(biāo)求出解析式,然后根據(jù)四邊形是平行四邊形和得出,再分類討論求得和的坐標(biāo);②求出解析式,交點(diǎn)為,再求出坐標(biāo),然后由兩點(diǎn)間距離公式求出和長度,因?yàn)樾D(zhuǎn)不改變長度,所以長度不變,當(dāng)旋轉(zhuǎn)到軸上時(shí),此時(shí)最短,所以此時(shí)等于,然后帶入計(jì)算即可.
【詳解】(1)解:①∵拋物線交軸于點(diǎn)和點(diǎn),
∴將、坐標(biāo)代入有,
解得
∴拋物線的表達(dá)式為;························································2分
(2)解:∵拋物線的表達(dá)式為,
∴,
設(shè)直線的解析式為
∵ ,,

解得
∴直線的解析式為························································3分
∵為與軸交點(diǎn),
∴,
∴,
∵四邊形是平行四邊形
∴且,且點(diǎn)在點(diǎn)下方,
∵且在軸上
∴,
∵,
∴,或,························································4分
若為,,
∵,故,
若為,,
∵,此時(shí),矛盾,舍去
綜上,;························································6分
②最小值為
如圖,設(shè)的解析式為
∵拋物線交軸于點(diǎn),
∴點(diǎn)的坐標(biāo)為,
將點(diǎn),、,的坐標(biāo)代入得
解得
∴的解析式為
與相交于點(diǎn)

解得
所以點(diǎn)的坐標(biāo)為························································8分
設(shè)直線的解析式為
將點(diǎn)、的坐標(biāo)代入直線的解析式得
解得
所以直線的解析式為························································9分
與相交于點(diǎn)

解得,
∴點(diǎn)的坐標(biāo)為························································10分

,
∴,
當(dāng)旋轉(zhuǎn)到軸上時(shí),此時(shí)最短,
∴,
∴.
故的最小值.························································12分
【點(diǎn)睛】本題考查了拋物線的綜合運(yùn)用,利用待定系數(shù)法求函數(shù)的解析式,找出相關(guān)點(diǎn)坐標(biāo),逐步分析求解是解題的關(guān)鍵.
1
2
3
4
5
6
7
8
9
10
D
B
C
B
D
C
A
B
B
A

相關(guān)試卷

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(鹽城卷)(參考答案及評(píng)分標(biāo)準(zhǔn)):

這是一份2024年初三中考第一次模擬考試試題:數(shù)學(xué)(鹽城卷)(參考答案及評(píng)分標(biāo)準(zhǔn)),共10頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(泰州卷)(參考答案及評(píng)分標(biāo)準(zhǔn)):

這是一份2024年初三中考第一次模擬考試試題:數(shù)學(xué)(泰州卷)(參考答案及評(píng)分標(biāo)準(zhǔn)),共12頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(安徽卷)(參考答案及評(píng)分標(biāo)準(zhǔn)):

這是一份2024年初三中考第一次模擬考試試題:數(shù)學(xué)(安徽卷)(參考答案及評(píng)分標(biāo)準(zhǔn)),共10頁。試卷主要包含了選擇題,填空題,十一個(gè)數(shù)據(jù)分別是,八年級(jí)在等級(jí)的人數(shù)分別為,,等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(山西卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(山西卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(河北卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(河北卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(重慶卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(重慶卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(深圳卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

2024年初三中考第一次模擬考試試題:數(shù)學(xué)(深圳卷)(參考答案及評(píng)分標(biāo)準(zhǔn))

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
中考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部