
思路分析
?等價轉(zhuǎn)換f(x)=0
?判斷g(x)=ex·sin x-x+1的零點
?討論g(x)在eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2)))上的零點個數(shù)
?討論g(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π))上的零點個數(shù)
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題1] (2023·安慶模擬)已知函數(shù)f(x)=eln x+bx2e1-x.若f(x)的導(dǎo)函數(shù)f′(x)恰有兩個零點,求b的取值范圍.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題2] 設(shè)函數(shù)f(x)=aln(x+1)+x2(a∈R),函數(shù)g(x)=ax-1.證明:當(dāng)a≤2時,函數(shù)H(x)=f(x)-g(x)至多有一個零點.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
規(guī)律方法 (1)求解函數(shù)零點(方程根)個數(shù)問題的步驟
①將問題轉(zhuǎn)化為函數(shù)的零點問題,進(jìn)而轉(zhuǎn)化為函數(shù)的圖象與x軸(或直線y=k)在該區(qū)間上的交點問題.
②利用導(dǎo)數(shù)研究該函數(shù)在該區(qū)間上的單調(diào)性、極值(最值)、端點值等性質(zhì).
③結(jié)合圖象求解.
(2)已知零點求參數(shù)的取值范圍
①結(jié)合圖象與單調(diào)性,分析函數(shù)的極值點.
②依據(jù)零點確定極值的范圍.
③對于參數(shù)選擇恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn)進(jìn)行討論.
1.(2023·鄭州模擬)已知函數(shù)f(x)=xln x+a-ax(a∈R).若函數(shù)f(x)在區(qū)間[1,e]上有且只有一個零點,求實數(shù)a的取值范圍.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·商洛模擬)已知函數(shù)f(x)=(x-2)ex,其中e為自然對數(shù)的底數(shù).函數(shù)g(x)=f(x)-ln x,證明:g(x)有且僅有兩個零點.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
這是一份專題一 第5講 母題突破3 零點問題2024年高考數(shù)學(xué),共1頁。試卷主要包含了已知函數(shù)f=x2+xln x.等內(nèi)容,歡迎下載使用。
這是一份專題一 第5講 母題突破2 恒成立問題與能成立問題2024年高考數(shù)學(xué),共1頁。
這是一份新高考數(shù)學(xué)二輪復(fù)習(xí)考點突破講義 第1部分 專題突破 專題6 第4講 母題突破3 定值問題(含解析),共8頁。
微信掃碼,快速注冊
注冊成功