2023屆云南省昆明市三診一模高三復(fù)習(xí)教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試題試題 一、單選題1.已知集合,則    A B C D【答案】A【分析】根據(jù)對(duì)數(shù)求解集合B,再求交集即可得結(jié)果.【詳解】由題意可得:,.故選:A.2.歐拉公式:將復(fù)指數(shù)函數(shù)與三角函數(shù)聯(lián)系起來,在復(fù)變函數(shù)中占有非常重要的地位,根據(jù)歐拉公式,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為(    A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【分析】根據(jù)復(fù)數(shù)的幾何意義結(jié)合象限角的三角函數(shù)值的符號(hào)分析判斷【詳解】由題意可得:對(duì)應(yīng)的點(diǎn)為,則,位于第二象限.故選:B.3.某單位職工參加某APP推出的二十大知識(shí)問答競(jìng)賽活動(dòng),參與者每人每天可以作答三次,每次作答20題,每題答對(duì)得5分,答錯(cuò)得0分,該單位從職工中隨機(jī)抽取了10位,他們一天中三次作答的得分情況如圖:根據(jù)圖,估計(jì)該單位職工答題情況,則下列說法正確的是(    A.該單位職工一天中各次作答的平均分保持一致B.該單位職工一天中各次作答的正確率保持一致C.該單位職工一天中第三次作答得分的極差小于第二次的極差D.該單位職工一天中第三次作答得分的標(biāo)準(zhǔn)差小于第一次的標(biāo)準(zhǔn)差【答案】D【分析】根據(jù)給出統(tǒng)計(jì)圖數(shù)據(jù),分別計(jì)算出三次作答的平均分、正確率、極差、標(biāo)準(zhǔn)差,即可作出判斷.【詳解】由題可得,該單位抽取的10位員工三次作答的得分分別為: 1號(hào)員工2號(hào)員工3號(hào)員工4號(hào)員工5號(hào)員工6號(hào)員工7號(hào)員工8號(hào)員工9號(hào)員工10號(hào)員工第一次作答65808580909090859090第二次作答80859090959095909595第三次作答8590959510010010095100100 對(duì)于A:第一次作答的平均分為:,第二次作答的平均分:,第三次作答的平均分:故該單位職工一天中各次作答的平均分不一致,故A錯(cuò)誤;對(duì)于B:第一次作答的正確率: ,第二次作答的正確率: ,第三次作答的正確率:故該單位職工一天中各次作答的正確率不一致,故B錯(cuò)誤;對(duì)于C:該單位職工一天中第三次作答得分的極差:,該單位職工一天中第二次作答得分的極差:,故該單位職工一天中第三次作答得分的極差等于第二次的極差,故C錯(cuò)誤;對(duì)于D:該單位職工一天中第三次作答得分的標(biāo)準(zhǔn)差:,該單位職工一天中第一次作答得分的標(biāo)準(zhǔn)差:故該單位職工一天中第三次作答得分的標(biāo)準(zhǔn)差小于第一次的標(biāo)準(zhǔn)差,故D正確,故選:D4.已知均為等差數(shù)列,,,則數(shù)列的前50項(xiàng)的和為(    A5000 B5050 C5100 D5150【答案】B【分析】由題設(shè)易知為等差數(shù)列,結(jié)合已知求公差,應(yīng)用等差數(shù)列前n項(xiàng)和公式求和即可.【詳解】由題設(shè)也為等差數(shù)列,且公差、公差的和,,故,所以50項(xiàng)和為.故選:B5.已知直線與圓交于兩點(diǎn),則    A B C D【答案】D【分析】根據(jù)垂徑定理求弦長,再結(jié)合余弦定理運(yùn)算求解.【詳解】的圓心為,半徑,圓心到直線的距離,可得,且,.故選:D.6.函數(shù)在區(qū)間上的圖象大致為(    A BC D【答案】A【分析】根據(jù)函數(shù)奇偶性排除BD,再取特值排除C.【詳解】對(duì)于函數(shù),,為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,B、D錯(cuò)誤;,且,,C錯(cuò)誤;故選:A.7.已知函數(shù)的定義域均為,為偶函數(shù)且,,則     A21 B22 C D【答案】C【分析】根據(jù)題意證明,結(jié)合對(duì)稱性分析運(yùn)算即可.【詳解】為偶函數(shù)且,則,關(guān)于點(diǎn)對(duì)稱,,則是以周期為4 的周期函數(shù),故關(guān)于點(diǎn)對(duì)稱,,,,.故選:C.8.某機(jī)床廠工人利用實(shí)心的圓錐舊零件改造成一個(gè)正四棱柱的新零件,且正四棱柱的中心在圓錐的軸上,下底面在圓錐的底面內(nèi).已知該圓錐的底面圓半徑為3cm,高為3cm,則該正四棱柱體積(單位:)的最大值為(    A B8 C D9【答案】B【分析】設(shè),借助于圓錐的軸截面分析可得,利用柱體體積公式可求得,求導(dǎo),利用導(dǎo)數(shù)求最值.【詳解】顯然當(dāng)正四棱柱的上底面頂點(diǎn)在圓錐表面時(shí)的體積較大,如圖,借助于圓錐的軸截面,由題意可得:,設(shè),則,可得,故該正四棱柱體積構(gòu)建,則,當(dāng)時(shí),;當(dāng)時(shí),;上單調(diào)遞增,在上單調(diào)遞減,,故該正四棱柱體積的最大值為8.故選:B.【點(diǎn)睛】方法定睛:利用導(dǎo)數(shù)解決生活中的優(yōu)化問題的一般步驟(1)建模:分析實(shí)際問題中各量之間的關(guān)系,列出實(shí)際問題的數(shù)學(xué)模型,寫出實(shí)際問題中變量之間的函數(shù)關(guān)系式yf(x)(2)求導(dǎo):求函數(shù)的導(dǎo)數(shù)f ′(x),解方程f ′(x)0.(3)求最值:比較函數(shù)在區(qū)間端點(diǎn)和使f ′(x)0的點(diǎn)的函數(shù)值的大小,最大()者為最大()值.(4)作答:回歸實(shí)際問題作答. 二、多選題9.已知,,設(shè),,,則下列正確的是(    A.若,則B.若,則C.以,為鄰邊的平行四邊形的面積為D.若,則的最大值為【答案】BCD【分析】對(duì)AB、C:根據(jù)平面向量的數(shù)量積分析判斷;對(duì)D:根據(jù)題意求得點(diǎn)C的軌跡方程,結(jié)合圓的性質(zhì)分析判斷.【詳解】對(duì)A:若,則,可得,注意到,可得,A錯(cuò)誤;對(duì)B:若,且,則,,故,B正確;對(duì)C:以,為鄰邊的平行四邊形的面積,,則,即,則有:當(dāng)時(shí),則,;當(dāng)時(shí),則;當(dāng)時(shí),則;綜上所述:以為鄰邊的平行四邊形的面積為,C正確;對(duì)D:不妨設(shè),則可得,,則,整理得,點(diǎn)的軌跡為以為圓心,半徑的圓,由圓可知,的最大值為D正確;故選:BCD.10.已知雙曲線的左、右焦點(diǎn)分別為,,過原點(diǎn)的直線與雙曲線交于兩點(diǎn),若四邊形為矩形且,則下列正確的是(    A B的漸近線方程為C.矩形的面積為 D的斜率為【答案】AD【分析】對(duì)A、C:根據(jù)題意結(jié)合雙曲線的定義可求得,分析運(yùn)算;對(duì)B:由,可得,進(jìn)而可求的漸近線方程;對(duì)D:利用余弦定理可求,進(jìn)而可求,注意結(jié)合雙曲線的對(duì)稱性分析判斷.【詳解】不妨設(shè)點(diǎn)在第一象限,如圖,由題意可得:四邊形為平行四邊形,由雙曲線的定義可得:,則,對(duì)A四邊形為矩形,則,A正確;對(duì)B:由選項(xiàng)A可得:,則注意到雙曲線的焦點(diǎn)在x軸上,則的漸近線方程為B錯(cuò)誤;對(duì)C:矩形的面積為C錯(cuò)誤;對(duì)D:可知:,,且,可得,故由雙曲線的對(duì)稱性可得:的斜率為,D正確;故選:AD.11.三棱錐中,平面,,記,,,則下列正確的是(    A BC D.若,則與平面所成的角為【答案】BCD【分析】根據(jù)題意結(jié)合線面垂直可證,利用直角三角形的余弦值的定義與取值范圍分析可判斷A、B、C;對(duì)D:建系,利用空間向量求線面夾角可得,根據(jù)題意分析判斷.【詳解】平面,且平面,則,平面平面,平面,可得,設(shè),則,可得,,即,,則,A錯(cuò)誤,BC正確;如圖,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,則,可得,設(shè)平面的法向量為,則,,則,即,設(shè)與平面所成的角為,,當(dāng)時(shí),即,則,即,此時(shí),,則,與平面所成的角為,D正確.故選:BCD.12.對(duì)于函數(shù),若存在兩個(gè)常數(shù),使得,則稱函數(shù)函數(shù),則下列函數(shù)能被稱為函數(shù)的是(    A BC D【答案】ABD【分析】對(duì)A:根據(jù)題意結(jié)合指數(shù)冪運(yùn)算分析判斷;對(duì)B:根據(jù)題意整理得,分析判斷;對(duì)C:根據(jù)題意整理得,分析判斷,對(duì)D:根據(jù)題意結(jié)合兩角和差的正切公式運(yùn)算分析.【詳解】對(duì)A:若,則,即存在兩個(gè)常數(shù),使得使得成立,函數(shù),A正確;對(duì)B:若,則,為定值,則,解得,且故存在兩個(gè)常數(shù),,函數(shù),B正確;對(duì)C:若,則不為定值,即不存在兩個(gè)常數(shù),,使得,不為為函數(shù)C錯(cuò)誤;對(duì)D:若,則,,即,可得,解得,即存在兩個(gè)常數(shù),使得使得成立,函數(shù),D正確;故選:ABD.【點(diǎn)睛】方法點(diǎn)睛:對(duì)于新定義問題要充分理解定義,嚴(yán)格按照定義的要求推理、運(yùn)算,注意區(qū)別我們已學(xué)的相近知識(shí).該題型重點(diǎn)考查學(xué)生的思維邏輯能力. 三、填空題13.若函數(shù)在定義域上不單調(diào),則正整數(shù)的最小值是______【答案】3【分析】求導(dǎo),令,得到,再根據(jù),且求解.【詳解】解:因?yàn)楹瘮?shù)所以,,得,因?yàn)?/span>,且,所以當(dāng)時(shí),,則單調(diào)遞增,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),所以不單調(diào)遞增,所以正整數(shù)的最小值是3,故答案為:314.一個(gè)數(shù)學(xué)興趣小組共有2名男生3名女生,從中隨機(jī)選出2名參加交流會(huì),在已知選出的2名中有1名是男生的條件下,另1名是女生的概率為______【答案】【分析】首先求出男女生各1名的概率,再應(yīng)用對(duì)立事件概率求法求至少有1名男生的概率,最后應(yīng)用條件概率公式求概率.【詳解】A表示“2名中至少有1名男生B表示“2名中有1名女生,所以2名中有1名是男生的條件下,另1名是女生的概率為,,故.故答案為:15.已知的部分圖象如圖所示,的圖象上兩點(diǎn),則______【答案】【分析】首先根據(jù)題意得到,從而得到,根據(jù)得到,再計(jì)算即可.【詳解】因?yàn)?/span>的圖象上兩點(diǎn),所以,解得,即.所以.又因?yàn)?/span>,所以,,因?yàn)?/span>,所以,即..故答案為:16.已知拋物線的焦點(diǎn)為,經(jīng)過拋物線上一點(diǎn),作斜率為的直線交的準(zhǔn)線于點(diǎn),為準(zhǔn)線上異于的一點(diǎn),當(dāng)時(shí),______【答案】##【分析】根據(jù)題設(shè)條件確定在第一象限內(nèi),且,設(shè),結(jié)合得到關(guān)于m的方程并求值,又即可得結(jié)果.【詳解】不妨令為過點(diǎn)垂直于準(zhǔn)線的垂足,又,即角平分線,是斜率為的直線與拋物線準(zhǔn)線的交點(diǎn),則在第一象限內(nèi),,且,根據(jù)角平分線性質(zhì)知:,如上圖示,,則直線,令,則,整理可得,則,.故答案為: 四、解答題17不以規(guī)矩,不能成方圓,出自《孟子·離婁章句上》.規(guī)指圓規(guī),指由相互垂直的長短兩條直尺構(gòu)成的角尺,是用來測(cè)量、畫圓和方形圖案的工具。有一塊圓形木板,以量之,較長邊為10cm,較短邊為5cm,如圖所示,將這塊圓形木板截出一塊三角形木塊,三角形頂點(diǎn)都在圓周上,角的對(duì)邊分別為,,滿足(1);(2)的面積為,且,求的周長【答案】(1)(2)cm 【分析】1)根據(jù)題意可求圓的直徑,再結(jié)合正弦定理運(yùn)算求解;2)根據(jù)題意結(jié)合面積公式和余弦定理運(yùn)算求解.【詳解】1)設(shè)的外接圓半徑為,則cm),由正弦定理,可得.2,則,故為銳角,,由面積公式,即,可得,由余弦定理,即,可得,解得cm),的周長為cm.18.某新能源汽車公司從2018年到2022年汽車年銷售量(單位:萬輛)的散點(diǎn)圖如下:記年份代碼為(1)根據(jù)散點(diǎn)圖判斷,模型與模型,哪一個(gè)更適宜作為年銷售量關(guān)于年份代碼的回歸方程?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程;(3)預(yù)測(cè)2023年該公司新能源汽車銷售量.參考數(shù)據(jù):34559796572805 參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,【答案】(1)(2)(3)預(yù)測(cè)2023年該公司新能源汽車銷售量萬輛 【分析】1)根據(jù)散點(diǎn)圖結(jié)合一次函數(shù)、二次函數(shù)的圖象特征分析判斷;2)換元令,結(jié)合題中數(shù)據(jù)與公式運(yùn)算求解;3)令,代入回歸方程運(yùn)算求解.【詳解】1)由散點(diǎn)圖可知:散點(diǎn)圖與一次函數(shù)偏差較大,與二次函數(shù)較接近,故模型更適合.2)令,則,,對(duì)于回歸方程,可得:,,故回歸方程為,即.3)由(2)可得:,則預(yù)測(cè)2023年該公司新能源汽車銷售量萬輛.19.已知數(shù)列的前項(xiàng)和為,,且滿足(1)設(shè),證明:是等比數(shù)列(2)設(shè),數(shù)列的前項(xiàng)和為,證明:【答案】(1)證明見解析(2)證明見解析 【分析】1)由題設(shè)可得,整理變形得,結(jié)合等比數(shù)列定義即可證結(jié)論;2)根據(jù)的關(guān)系求通項(xiàng)公式,進(jìn)而可得,在上放縮,結(jié)合裂項(xiàng)求和證結(jié)論.【詳解】1)由題設(shè),,則,所以,即,而,是首項(xiàng)與公比都為的等比數(shù)列.2)由(1,即當(dāng)時(shí),顯然滿足上式,所以,則,,又時(shí),所以,故.20.如圖,直四棱柱中,是等邊三角形,(1)從三個(gè)條件:;中任選一個(gè)作為已知條件,證明:(2)在(1)的前提下,若,是棱的中點(diǎn),求平面與平面所成角的余弦值.【答案】(1)證明見詳解(2) 【分析】1)根據(jù)線面垂直的判定定理和性質(zhì)定理分析證明;2)建系,利用空間向量求面面夾角.【詳解】1)對(duì):設(shè)的交點(diǎn)為,是等邊三角形,且,則的中點(diǎn),可得,且,則,,即,平面,平面,,且平面,平面,注意到平面,故;對(duì),則,,即可得,即,平面,平面,且平面,平面,注意到平面,故;對(duì),即,中,則,可得,則,即,平面,平面,且平面平面,注意到平面,故.2)如圖,建立空間直角坐標(biāo)系,設(shè),,可得,設(shè)平面的法向量為,則,,則,即設(shè)平面的法向量為,則,,則,即,故平面與平面所成角的余弦值為.21.已知過點(diǎn)的橢圓的焦距為2,其中為橢圓的離心率.(1)的標(biāo)準(zhǔn)方程;(2)設(shè)為坐標(biāo)原點(diǎn),直線交于兩點(diǎn),以為鄰邊作平行四邊形,且點(diǎn)恰好在上,試問:平行四邊形的面積是否為定值?若是定值,求出此定值;若不是,說明理由.【答案】(1)(2)是定值,定值為 【分析】1)根據(jù)題意列式求解,即可得結(jié)果;2)根據(jù)題意結(jié)合韋達(dá)定理求點(diǎn),代入橢圓方程可得,結(jié)合弦長公式求面積即可,注意討論直線的斜率是否存在.【詳解】1)設(shè)橢圓的焦距為,則由題意可得,解得的標(biāo)準(zhǔn)方程為.2)平行四邊形的面積為定值,理由如下:由(1)可得:,則有:當(dāng)直線的斜率不存在時(shí),設(shè),為平行四邊形,則點(diǎn)為長軸頂點(diǎn),不妨設(shè),可得,解得,故平行四邊形的面積當(dāng)直線的斜率存在時(shí),設(shè),聯(lián)立方程,消去y,可得,,為平行四邊形,則,即點(diǎn)在橢圓上,則,整理可得,滿足,,可得點(diǎn)到直線的距離,故平行四邊形的面積;綜上所述:平行四邊形的面積為定值.【點(diǎn)睛】方法定睛:求解定值問題的三個(gè)步驟(1)由特例得出一個(gè)值,此值一般就是定值;(2)證明定值,有時(shí)可直接證明定值,有時(shí)將問題轉(zhuǎn)化為代數(shù)式,可證明該代數(shù)式與參數(shù)(某些變量)無關(guān);也可令系數(shù)等于零,得出定值;(3)得出結(jié)論.22.已知函數(shù)(1)求曲線在點(diǎn)處的切線方程;(2)若函數(shù)有兩個(gè)零點(diǎn)(其中),且不等式恒成立,求實(shí)數(shù)的取值范圍.【答案】(1)(2) 【分析】1)根據(jù)導(dǎo)數(shù)的幾何意義運(yùn)算求解;2)根據(jù)題意可得有兩個(gè)正根,換元令,分析可得有兩個(gè)正根,換元令,整理分析可得時(shí)恒成立,故而令,繼而轉(zhuǎn)化為利用導(dǎo)數(shù)求解函數(shù)的最值問題,結(jié)合分類討論,即可求得答案.【詳解】1,則,可得即切點(diǎn)坐標(biāo)為,切線斜率,故切線方程為,即.2,,可得,故函數(shù)有兩個(gè)零點(diǎn)等價(jià)于有兩個(gè)正根,,則等價(jià)于有兩個(gè)正根,當(dāng)時(shí)恒成立,上單調(diào)遞增,對(duì)于,由,可得可得,可得,,由,可得,,整理可得由于恒成立,等價(jià)于當(dāng)時(shí)恒成立,等價(jià)于當(dāng)時(shí)恒成立,,則,,則,當(dāng)時(shí),,所以上單調(diào)遞增,則有當(dāng)時(shí),i)當(dāng)時(shí),當(dāng)時(shí),,所以上單調(diào)遞增,則有,符合題意。)當(dāng)時(shí),由于,且,,所以存在唯一的 使得所以當(dāng)時(shí),,則上單調(diào)遞減,所以,不符合題意.綜上,不等式恒成立,則 .【點(diǎn)睛】方法點(diǎn)睛:兩招破解不等式的恒成立問題(1)分離參數(shù)法第一步:將原不等式分離參數(shù),轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;第二步:利用導(dǎo)數(shù)求該函數(shù)的最值;第三步:根據(jù)要求得所求范圍.(2)函數(shù)思想法第一步將不等式轉(zhuǎn)化為含待求參數(shù)的函數(shù)的最值問題;第二步:利用導(dǎo)數(shù)求該函數(shù)的極值;第三步:構(gòu)建不等式求解. 

相關(guān)試卷

2023屆云南省昆明市高三“三診一?!备呖寄M考試數(shù)學(xué)試題含解析:

這是一份2023屆云南省昆明市高三“三診一?!备呖寄M考試數(shù)學(xué)試題含解析,共19頁。試卷主要包含了單選題,多選題,填空題,解答題等內(nèi)容,歡迎下載使用。

2022屆云南省昆明市高三下學(xué)期3月”三診一?!皬?fù)習(xí)教學(xué)質(zhì)量檢測(cè)(二模)數(shù)學(xué)(理)試題(PDF版):

這是一份2022屆云南省昆明市高三下學(xué)期3月”三診一?!皬?fù)習(xí)教學(xué)質(zhì)量檢測(cè)(二模)數(shù)學(xué)(理)試題(PDF版),文件包含云南省昆明市2022屆高三”三診一?!皬?fù)習(xí)教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理試題pdf、2022昆明市二統(tǒng)理數(shù)答題卡pdf等2份試卷配套教學(xué)資源,其中試卷共13頁, 歡迎下載使用。

2022屆云南省昆明市高三下學(xué)期3月”三診一?!皬?fù)習(xí)教學(xué)質(zhì)量檢測(cè)(二模)數(shù)學(xué)(文)試題(PDF版):

這是一份2022屆云南省昆明市高三下學(xué)期3月”三診一?!皬?fù)習(xí)教學(xué)質(zhì)量檢測(cè)(二模)數(shù)學(xué)(文)試題(PDF版),共11頁。

英語朗讀寶
資料下載及使用幫助
版權(quán)申訴
  • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請(qǐng)聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
  • 2.壓縮包下載后請(qǐng)先用軟件解壓,再使用對(duì)應(yīng)軟件打開;軟件版本較低時(shí)請(qǐng)及時(shí)更新
  • 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
  • 精品推薦
  • 所屬專輯53份
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

  • 0

    資料籃

  • 在線客服

    官方
    微信

    添加在線客服

    獲取1對(duì)1服務(wù)

  • 官方微信

    官方
    微信

    關(guān)注“教習(xí)網(wǎng)”公眾號(hào)

    打開微信就能找資料

  • 免費(fèi)福利

    免費(fèi)福利

返回
頂部