絕密啟用前五市十校教研教改共同體  三湘名校教育聯(lián)盟  湖湘名校教育聯(lián)合體2022年下學期高二期中考試數(shù)學命題:雙峰一中數(shù)學備課組  審題:永州一中數(shù)學備課組本試卷共4頁。全卷滿分150分,考試時間120分鐘。注意事項:1.答題前,考生務必將自己的姓名、準考證號填寫在本試卷和答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應的答案標號涂黑,如有改動,用橡皮擦干凈后,再選涂其他答案;回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、單項選擇題:本題共8小題,每小題5分,共40.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知集合,,則   A. B. C. D.2.已知圓C的圓心坐標為,且過坐標原點,則圓C的方程為(    A. B.C. D.3.黨的十八大報告指出,必須堅持在發(fā)展中保障和改善民生,不斷實現(xiàn)人民對美好生活的向往,為響應中央號召,某社區(qū)決定在現(xiàn)有的休閑廣場內修建一個半徑為4m的圓形水池來規(guī)劃噴泉景觀.設計如下:在水池中心豎直安裝一根高出水面為2m的噴水管(水管半徑忽略不計),它噴出的水柱呈拋物線型,要求水柱在與水池中心水平距離為處達到最高,且水柱剛好落在池內,則水柱的最大高度為(    A. B. C. D.4.已知是等比數(shù)列的前n項和,,,成等差數(shù)列,則下列結論正確的是(    A. B. C. D.5.已知冪函數(shù)的圖象是等軸雙曲線C,且它的焦點在直線上,則下列曲線中,與曲線C的實軸長相等的雙曲線是(    A. B. C. D.6.已知函數(shù),下列說法正確的是(    A.函數(shù)的最小正周期是 B.函數(shù)的最大值為C.函數(shù)的圖象關于點對稱 D.函數(shù)在區(qū)間上單調遞增7.如圖水平放置的邊長為1的正方形沿x軸正向滾動,初始時頂點A在坐標原點,(沿x軸正向滾動指的是先以頂點B為中心順時針旋轉,再以頂點C為中心順時針旋轉,如此繼續(xù)),設頂點的軌跡方程式,則   A.0 B.1 C. D.8.已知三棱錐中,,,若二面角的大小為120°,則三棱錐的外接球的表面積為(    A. B. C. D.二、多項選擇題:本題共4小題,每小題5分,共20.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0.9.下列說法正確的是(    A.命題,的否定為,B.中,若,則C.,則的充要條件是D.若直線平行,則210.已知各項均為正數(shù)的等差數(shù)列單調遞增,且,則(    A.公差d的取值范圍是 B.C.  D.的最小值為111.已知直線l與拋物線)交于A,B兩點,,,則下列說法正確的是(    A.若點D的坐標為,則B.直線過定點C.D點的軌跡方程為(原點除外)D.x軸交于點M,則的面積最大時,直線的斜率為112.在正方體中,,點M在正方體內部及表面上運動,下列說法正確的是(    A.M為棱的中點,則直線平面B.M在線段上運動,則的最小值為C.M重合時,以M為球心,為半徑的球與側面的交線長為D.M在線段上運動,則M到直線的最短距離為三、填空題:本題共4小題,每小題5分,共20.13.某中學高一年級有600人,高二年級有480人,高三年級有420人,因新冠疫情防控的需要,現(xiàn)用分層抽樣從中抽取一個容量為300人的樣本進行核酸檢測,則高三年級被抽取的人數(shù)為___________.14.設雙曲線C)的左、右焦點分別為,P是漸近線上一點,且滿足,,則雙曲線C的離心率為___________.15.已知動點在運動過程中總滿足關系式,記,,則面積的最大值為___________.16.意大利數(shù)學家斐波那契在研究兔子繁殖問題時發(fā)現(xiàn)了數(shù)列1,12,35,8,13,,數(shù)列中的每一項被稱為斐波那契數(shù),用符號表示(),已知,.1)若,則___________2分);2)若,則___________3分).四、解答題:本題共6小題,共70.解答應寫出必要的文字說明、證明過程及演算步驟.17.(本小題滿分10分)已知雙曲線C)的左右焦點分別為,,點M在雙曲線C的右支上,且,離心率.1)求雙曲線C的標準方程;2)若,求的面積.18.(本小題滿分12分)109日晚,2022年世界乒乓球團體錦標賽在中國成都落幕.中國隊女團與男團分別完成了五連冠與十連冠的霸業(yè).乒乓球運動在我國一直有著光榮歷史,始終領先世界水平,被國人稱為國球,在某次團體選拔賽中,甲乙兩隊進行比賽,采取五局三勝制(即先勝三局的團隊獲得比賽的勝利),假設在一局比賽中,甲隊獲勝的概率為0.6,乙隊獲勝的概率為0.4,各局比賽結果相對獨立.1)求這場選拔賽三局結束的概率;2)若第一局比賽乙隊獲勝,求比賽進入第五局的概率.19.(本小題滿分12分)已知銳角三角形中,角A,BC所對的邊分別為a,bc,向量,,且.1)求角B的大??;2)若,求面積的取值范圍.20.(本小題滿分12分)已知數(shù)列滿足,且,數(shù)列是各項均為正數(shù)的等比數(shù)列,的前n項和,滿足,.1)求數(shù)列的通項公式;2)設,記數(shù)列的前n項和為,求的取值范圍.21.(本小題滿分12分)如圖,在四棱錐中,,,,平面平面,E中點.1)求證:;2)求證:3)點Q在棱上,設),若二面角的余弦值為,求.22.(本小題滿分12分)已知橢圓C)過點,A為左頂點,且直線的斜率為.1)求橢圓C的標準方程;2)設在橢圓內部,在橢圓外部,過M作斜率不為0的直線交橢圓CPQ兩點,若,求證:為定值,并求出這個定值. 
五市十校教研教改共同體  三湘名校教育聯(lián)盟  湖湘名校教育聯(lián)合體2022年下學期高二期中考試數(shù)學參考答案、提示及評分細則一、選擇題:(本題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.【答案】C【解析】,.2.【答案】B【解析】圓心,半徑,故圓C方程為.3.【答案】C【解析】取一截面建系如圖,設拋物線方程為),記最大高度為h,如圖:,在拋物線上,故,兩式相除有,解得.4.【答案】AB【解析】若公比,,,此時,故公比,由題意,化簡有,故有,選答案AB.5.【答案】B【解析】由雙曲線幾何性質知,雙曲線的焦點在實軸上,實軸與雙曲線的交點是雙曲線的頂點,故雙曲線C的實軸長,選答案B.6.【答案】D【解析】由A,B錯誤.,所以C錯誤.時,,所以D正確.7.【答案】D【解析】A點運動軌跡最終構成圖象如圖:由圖可知.,BD段時,A點的軌跡方程為),.8.【答案】C【解析】由題意,取中點,中點,連接,分別是的外心,且,分別過,,,記,則O為外接球球心,在中,,,故,選C.二、多選題(本題共4小題,每小題5分,在每小題給出的選項中,有多項符合要求,全部選對的得5分,有選錯的得0分,部分選對的得2分)9.【答案】BC【解析】對A:否定為:,,所以A錯誤;D,當時,兩直線重合,所以D錯誤.10.【答案】AB【解析】由題意得,,故A正確;,故B正確;,知C錯誤;,當且僅當時取到等號,但,故不能取=,所以D.11.【答案】ABC【解析】,由方程為,聯(lián)立,消去x,記,,,由,,故A正確;對選項BCD,可設,代入,,由,故直線,過定點,即,故B正確;,得D在以為直徑的圓:上運動(原點除外),故C正確;時,面積最大,此時,有,故D錯誤.12.【答案】ACD【解析】易知A,D正確;對選項B:展開到同一平面上如圖.,故B錯誤;對選項CM重合時,在側面上的射影為,故交線是以為圓心的一段圓?。?/span>個圓),且圓半徑,故圓弧長,所以C正確.三、填空題(本題共4小題,每小題5分,共20分)13.【答案】84【解析】由分層抽樣易得.14.【答案】【解析】不妨設P在第一象限,則,依題意:,離線率.15.【答案】18【解析】易得M在橢圓上運動,且B在橢圓上,A為左頂點,由方程:,設直線l與橢圓相切于點M.聯(lián)立,消去x,,依題意,時,面積最大,此時直線l距離為,又.16.【答案】(1112分)  23分)【解析】(1,2.四、解答題(本大題共6小題,共70分,解答應寫出文字說明,證明過程或演算步驟)17.【答案】(1  2【解析】(1)由題意,································································1···············································································2,···············································································3···············································································4故雙曲線C的方程為;··································································52,則由雙曲線定義可得  ,由三角形余弦定理得  ,······························································7,···············································································9的面積.··········································································1018.【答案】(10.28  20.432【解析】設i局甲勝為事件,j局乙勝為事件i,2,34,5),1)記三局結束比賽,則,·························································2·················································································62)記決勝局進入第五局比賽,則,··················································8.·················································································1219.【答案】(1  2【解析】(1)由,···································································2由正弦定理得,······································································4,,···········································································62)解法一:在銳角中,由(1)知,,有,令,則,,由正弦定理得,的面積  ································································8,················································································10,,則,于是得,所以面積的取值范圍是.································································12解法二:由(1)可知,,故,又因為,所以,·············································································8又因為,所以,即有,則,·········································································10又由,所以面積的取值范圍是.································································1220【答案】(1  2【解析】(1)由···································································1(常數(shù)),········································································2故數(shù)列是以為公差的等差數(shù)列,且首項為,··········································································3,···············································································4;···············································································52)設公比為q),由題意:,,解得(舍),,,···············································································7,兩式相減得,·················································································9··············································································10,知上單調遞增,································································11.···············································································1221.【答案】(1)略  2)略  3【解析】(1)證明:取中點F,連接,,,又,,四邊形是平行四邊形,,,;·············································································42)證明:由題意:,,同理,,,···············································································6又面,,.,;·············································································83)以D為原點,建立如圖所示的空間直角坐標系,,,,,,,有,··········································································10是面的法向量,,,有,··········································································11取面的法向量.···············································································1222.【答案】(1  2為定值4,證明略【解析】(1)由題意:,故橢圓C的標準方程為;································································42)設聯(lián)立消去x,,,,···········································································7,則·············································································9),(定值),綜上:為定值4.····································································...12

相關試卷

湖南省五市十校教研教改共同體2024屆高三上學期12月大聯(lián)考數(shù)學試題(Word版附解析):

這是一份湖南省五市十校教研教改共同體2024屆高三上學期12月大聯(lián)考數(shù)學試題(Word版附解析),共22頁。

湖南省五市十校教研教改共同體2023-2024學年高二上學期期中聯(lián)考數(shù)學試題(Word版附解析):

這是一份湖南省五市十校教研教改共同體2023-2024學年高二上學期期中聯(lián)考數(shù)學試題(Word版附解析),共21頁。

2023-2024學年湖南省五市十校教研教改共同體高二上學期期中聯(lián)考數(shù)學試卷含答案:

這是一份2023-2024學年湖南省五市十校教研教改共同體高二上學期期中聯(lián)考數(shù)學試卷含答案,文件包含湖南省五市十校教研教改共同體2023-2024學年高二上學期期中聯(lián)考數(shù)學試題原卷版docx、湖南省五市十校教研教改共同體2023-2024學年高二上學期期中聯(lián)考數(shù)學試題解析版docx等2份試卷配套教學資源,其中試卷共32頁, 歡迎下載使用。

英語朗讀寶

相關試卷 更多

資料下載及使用幫助
版權申訴
版權申訴
若您為此資料的原創(chuàng)作者,認為該資料內容侵犯了您的知識產(chǎn)權,請掃碼添加我們的相關工作人員,我們盡可能的保護您的合法權益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權申訴二維碼
期中專區(qū)
  • 精品推薦
  • 所屬專輯9份
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內有效

設置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部