麻城實驗高中2021屆高三第五次模擬數(shù)學(xué)試題本試卷共22題,滿分150分,共6頁.考試用時120分鐘.一、單項選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的)若集合,,則A. B. C. D. 2.設(shè)復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點關(guān)于虛軸對稱,且,則A. B. C. D. 3.函數(shù) 的部分圖象大致為A. B. C. D. 4.將5名學(xué)生分配到A,B,C,D,E這5個社區(qū)參加義務(wù)勞動,每個社區(qū)分配1名學(xué)生,且學(xué)生甲不能分配到A社區(qū),則不同的分配方法種數(shù)是A.72B.96C.108D.1205.在數(shù)1和3之間插入個實數(shù),使得這個數(shù)構(gòu)成等差數(shù)列,將這個數(shù)的和記為,則數(shù)列{}的前78項的和為A.3B. log378C.5D. log386.騎自行車是一種能有效改善心肺功能的耐力性有氧運動,深受大眾喜愛,如圖是某一自行車的平面結(jié)構(gòu)示意圖,已知圖中的圓前輪,圓后輪的半徑均為,,,均是邊長為4的等邊三角形設(shè)點P為后輪上的一點,則在騎動該自行車的過程中,的最大值為A. 18B. 24C. 36D. 487.已知是雙曲線的右焦點,過點作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于B,且滿足,則雙曲線的離心率為( )A. B.C.D.8.已知實數(shù),且,則大小關(guān)系為( )A.B.C.D.二、多項選擇題(本大題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項是符合題目要求的.全部選對的得5分,有選錯的得0分,部分選對的得2分)9.CPI是居民消費價格指數(shù)(comsummer priceindex)的簡稱.居民消費價格指數(shù)是一個反映居民家庭一般所購買的消費品價格水平變動情況的宏觀經(jīng)濟指標.如圖是根據(jù)國家統(tǒng)計局發(fā)布的2019年4月——2020年4月我國CPI漲跌幅數(shù)據(jù)繪制的折線圖(注:2019年6月與2018年6月相比較,叫同比;2019年6月與2019年5月相比較,叫環(huán)比),根據(jù)該折線圖,則下列結(jié)論正確的是()A.2019年4月至2020年4月各月與去年同期比較,CPI有漲有跌B.2019年4月居民消費價格同比漲幅最小,2020年1月同比漲幅最大C.2020年1月至2020年4月CPI只跌不漲D.2019年4月至2019年6月CPI漲跌波動不大,變化比較平穩(wěn)11.下列命題中,下列說法正確的是A.已知隨機變量服從二項分布,若,則B.將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差恒不變C.設(shè)隨機變量服從正態(tài)分布,若,則D.某人在10次射擊中,擊中目標的次數(shù)為,則當(dāng)時概率最大12.如圖,點M是棱長為1的正方體中的側(cè)面上的一個動點包含邊界,則下列結(jié)論正確的是A. 存在無數(shù)個點M滿足 B. 當(dāng)點M在棱上運動時,的最小值為 C. 在線段上存在點M,使異面直線與CD所成的角是 D. 滿足的點M的軌跡是一段圓弧三、填空題(本大題共4小題,每小題5分,共20分.把答案填寫在答題卡相應(yīng)位置上)13.向量,.若,則____________14.在各項都為正數(shù)的等比數(shù)列中,已知,其前n項之積為,且,則取最小值時,的值是___________.15.拋物線,過焦點的直線與相交于兩點,且在準線上的射影分別為的面積與的面積互為倒數(shù),則的面積為 .16.如圖,已知的頂點在平面上,點在平面同一側(cè),且,若與平面所成角分別為則面積的取值范圍是_____.四、解答題:本題共6小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟。17.(10分)設(shè)各項均為正數(shù)的等差數(shù)列{an}的前n項和為Sn,S7=35,且a1,a4-1,a7成等比數(shù)列.(1)求數(shù)列{an}的通項公式;(2)數(shù)列{bn}滿足bn+bn+1=an,求數(shù)列{bn}的前2n項的和T2n.19.(12分)某崗位聘用考核共設(shè)置2個環(huán)節(jié),競聘者需要參加全部2個環(huán)節(jié)的考核,通過聘用考核需要2個環(huán)節(jié)同時合格,規(guī)定:第1環(huán)節(jié)考核5個項目至少連續(xù)通過個為合格,否則為不合格;第2環(huán)節(jié)考核3個項目至少通過個為合格,否則為不合格.統(tǒng)計已有的測試數(shù)據(jù)得出第1環(huán)節(jié)每個項目通過的概率均為,第2環(huán)節(jié)每個項目通過的概率均為,各環(huán)節(jié)、各項目間相互獨立.(1)求通過改崗位聘用考核的概率;(2)若第1環(huán)節(jié)考核合格賦分60分,考核不合格賦分0分;第2環(huán)節(jié)考核合格賦分40分,考核不合格分0分,記2個環(huán)節(jié)考核后所得賦分為,求的分布列與數(shù)學(xué)期望.20.(12分)如圖,在三棱柱中,,且平面ABC⊥平面(1)求證:平面ABC⊥平面;(2)設(shè)點P為直線BC的中點,求直線與平面所成角的正弦值.21.(12分)設(shè)橢圓的離心率為,點,,分別為的上,左,右頂點,且.(1)求的標準方程;(2)點為直線上的動點,過點作,設(shè)與的交點為,,求的最大值.22.(12分)已知函數(shù)的最小值為0,其中.(1)求的值;(2)求證:對任意的,,有;(3)記,為不超過的最大整數(shù),求的值.麻城實驗高中2021屆高三年級五月模擬考試(五)答案1—8DCBBACBD9.BD10.AD11.BCD12.AD13.14. 915.216. 17.(1)(2)19.解:(1)證明:因為AC=2BC=2,所以BC=1.因為2∠ACB=,所以∠ACB=.在△ABC中,=,即=,所以sinB=1,即AB⊥BC.……2分又因為平面ABC⊥平面,平面ABC∩平面=BC,AB?平面ABC,所以AB⊥平面.又B1C?平面,所以AB⊥B1C,在△B1BC中,B1B=2,BC=1,∠CBB1=,所以B1C2=B1B2+BC2-2B1B?BC?cos=3,即B1C=,所以B1C⊥BC.……4分而AB⊥B1C,AB?平面ABC,BC?平面ABC,AB∩BC=B,所以B1C⊥平面ABC.又B1C?平面,所以平面ABC⊥平面.……6分(2)在平面ABC中過點C作AC的垂線CE,分別以CE,CA,CB1所在直線為x,y,z軸建立如圖所示的空間直角坐標系:則B(,,0),A(0,2,0),B1(0,0,),所以P(,,0),==(-,,0),……8分所以A1(-,,),所以=(,-,-),平面ACB1的一個法向量為=(1,0,0),……10分設(shè)直線A1P與平面ACB1所成的角為α,則sinα=|cos<,>|===.20.(1)記(,)分別為兩個環(huán)節(jié)第個項目通過1分之間相互獨立2分···············································································3分···············································································4分則.············································································5分(2)依題意,.··································································6分;;············································································8分;.···········································································10分故的分布列為···············································································12分21.(1)由已知,得.又因為,所以.所以.所求的標準方程為.··························································4分(2)解法一:設(shè)直線的方程為.······················································5分聯(lián)立方程組消去,得整理得:①······································································6分由△>0,得······································································7分聯(lián)立方程組,解得的坐標為··························································8分設(shè),,由①知②···································································9分又,··········································································10分所以,③將②代入③,得·································································11分當(dāng)時,有最大值.································································12分解法二:(1)同法一;(2)設(shè),則······························································5分由點斜式,可得直線的方程為,即.···············································6分聯(lián)立方程組,消去,得①······································································7分由解得,··········································································8分設(shè),,由①得②···································································9分由題意可知,···································································10分所以③將②代入③得···································································11分當(dāng)時,有最大值.································································12分22.(1),令,得,在單調(diào)遞減,單調(diào)遞增,,所以.(2)令,則,當(dāng)時,,所以,恒成立,因此在上單調(diào)遞減,從而對任意的,總有,即對任意的,有成立.(3),由(1)有.由(2)有,當(dāng)時,,所以有.又,,所以的取值只有可能是.