
?2021-2022中考數(shù)學(xué)模擬試卷
請(qǐng)考生注意:
1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。
2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。
一、選擇題(共10小題,每小題3分,共30分)
1.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是( ?。?br />
A.6 B.8 C.10 D.12
2.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是( ?。?br />
A. B. C. D.
3.某反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),則此函數(shù)圖象也經(jīng)過( )
A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)
4.如圖,兩個(gè)轉(zhuǎn)盤A,B都被分成了3個(gè)全等的扇形,在每一扇形內(nèi)均標(biāo)有不同的自然數(shù),固定指針,同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤A,B,兩個(gè)轉(zhuǎn)盤停止后觀察兩個(gè)指針?biāo)干刃蝺?nèi)的數(shù)字(若指針停在扇形的邊線上,當(dāng)作指向上邊的扇形).小明每轉(zhuǎn)動(dòng)一次就記錄數(shù)據(jù),并算出兩數(shù)之和,其中“和為7”的頻數(shù)及頻率如下表:
轉(zhuǎn)盤總次數(shù)
10
20
30
50
100
150
180
240
330
450
“和為7”出現(xiàn)頻數(shù)
2
7
10
16
30
46
59
81
110
150
“和為7”出現(xiàn)頻率
0.20
0.35
0.33
0.32
0.30
0.30
0.33
0.34
0.33
0.33
如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)“和為7”的概率為( )
A.0.33 B.0.34 C.0.20 D.0.35
5.對(duì)于二次函數(shù),下列說法正確的是( )
A.當(dāng)x>0,y隨x的增大而增大
B.當(dāng)x=2時(shí),y有最大值-3
C.圖像的頂點(diǎn)坐標(biāo)為(-2,-7)
D.圖像與x軸有兩個(gè)交點(diǎn)
6.甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米
其中正確的結(jié)論有( ?。?br />
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
7.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是( ?。?br />
A. B. C. D.
8.若關(guān)于x的一元二次方程x2-2x-k=0沒有實(shí)數(shù)根,則k的取值范圍是( )
A.k>-1 B.k≥-1 C.k<-1 D.k≤-1
9.如圖,AB是⊙O的直徑,AB=8,弦CD垂直平分OB,E是弧AD上的動(dòng)點(diǎn),AF⊥CE于點(diǎn)F,點(diǎn)E在弧AD上從A運(yùn)動(dòng)到D的過程中,線段CF掃過的面積為( ?。?br />
A.4π+3 B.4π+ C.π+ D.π+3
10.如圖,菱形OABC的頂點(diǎn)C的坐標(biāo)為(3,4),頂點(diǎn)A在x軸的正半軸上.反比例函數(shù)(x>0)的圖象經(jīng)過頂點(diǎn)B,則k的值為
A.12 B.20 C.24 D.32
二、填空題(本大題共6個(gè)小題,每小題3分,共18分)
11.如圖,矩形紙片ABCD中,AB=3,AD=5,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E,F(xiàn),要使折痕始終與邊AB,AD有交點(diǎn),BP的取值范圍是_____.
12.有兩個(gè)一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個(gè)結(jié)論中正確的是_____(填寫序號(hào)).
①如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根;
②如果方程M有兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同;
③如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是x=1;
④如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根.
13.如圖,有一個(gè)橫截面邊緣為拋物線的水泥門洞,門洞內(nèi)的地面寬度為,兩側(cè)離地面高處各有一盞燈,兩燈間的水平距離為,則這個(gè)門洞的高度為_______.(精確到)
14.某航班每次飛行約有111名乘客,若飛機(jī)失事的概率為p=1.111 15,一家保險(xiǎn)公司要為乘客保險(xiǎn),許諾飛機(jī)一旦失事,向每位乘客賠償41萬元人民幣. 平均來說,保險(xiǎn)公司應(yīng)向每位乘客至少收取_____元保險(xiǎn)費(fèi)才能保證不虧本.
15.如圖,菱形OABC的頂點(diǎn)O是原點(diǎn),頂點(diǎn)B在y軸上,菱形的兩條對(duì)角線的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點(diǎn)C,則k的值為 ?。?br />
16.如圖,如果四邊形ABCD中,AD=BC=6,點(diǎn)E、F、G分別是AB、BD、AC的中點(diǎn),那么△EGF面積的最大值為_____.
三、解答題(共8題,共72分)
17.(8分). 在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字﹣1、0、2,它們除了數(shù)字不同外,其他都完全相同.隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為 ;小麗先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的橫坐標(biāo).再將此球放回、攪勻,然后由小華再從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點(diǎn)M的縱坐標(biāo),請(qǐng)用樹狀圖或表格列出點(diǎn)M所有可能的坐標(biāo),并求出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的概率.
18.(8分)當(dāng)前,“精準(zhǔn)扶貧”工作已進(jìn)入攻堅(jiān)階段,凡貧困家庭均要“建檔立卡”.某初級(jí)中學(xué)七年級(jí)共有四個(gè)班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對(duì)A1,A2,A3,A4統(tǒng)計(jì)后,制成如圖所示的統(tǒng)計(jì)圖.
(1)求七年級(jí)已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并求出A1所在扇形的圓心角的度數(shù);
(3)現(xiàn)從A1,A2中各選出一人進(jìn)行座談,若A1中有一名女生,A2中有兩名女生,請(qǐng)用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.
19.(8分)已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),AC∥OP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.
(1)求證:PC是⊙O的切線;
(2)設(shè)OP=AC,求∠CPO的正弦值;
(3)設(shè)AC=9,AB=15,求d+f的取值范圍.
20.(8分)某商場(chǎng)以每件30元的價(jià)格購進(jìn)一種商品,試銷中發(fā)現(xiàn)這種商品每天的銷售量m(件)與每件的銷售價(jià)x(元)滿足一次函數(shù)關(guān)系m=162﹣3x.請(qǐng)寫出商場(chǎng)賣這種商品每天的銷售利潤y(元)與每件銷售價(jià)x(元)之間的函數(shù)關(guān)系式.商場(chǎng)每天銷售這種商品的銷售利潤能否達(dá)到500元?如果能,求出此時(shí)的銷售價(jià)格;如果不能,說明理由.
21.(8分)北京時(shí)間2019年3月10日0時(shí)28分,我國在西昌衛(wèi)星發(fā)射中心用長征三號(hào)乙運(yùn)載火箭,成功將中星衛(wèi)星發(fā)射升空,衛(wèi)星進(jìn)入預(yù)定軌道.如圖,火星從地面處發(fā)射,當(dāng)火箭達(dá)到點(diǎn)時(shí),從位于地面雷達(dá)站處測(cè)得的距離是,仰角為;1秒后火箭到達(dá)點(diǎn),測(cè)得的仰角為.(參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求發(fā)射臺(tái)與雷達(dá)站之間的距離;求這枚火箭從到的平均速度是多少(結(jié)果精確到0.01)?
22.(10分)如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,OB=3OA,點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)A向右運(yùn)動(dòng).點(diǎn)N以每秒2個(gè)單位長度的速度從點(diǎn)O向右運(yùn)動(dòng)(點(diǎn)M、點(diǎn)N同時(shí)出發(fā))數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是______.經(jīng)過幾秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等?
23.(12分)在矩形中,點(diǎn)在上,,⊥,垂足為.求證.若,且,求.
24.如圖,將△ABC放在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上.
(I)計(jì)算△ABC的邊AC的長為_____.
(II)點(diǎn)P、Q分別為邊AB、AC上的動(dòng)點(diǎn),連接PQ、QB.當(dāng)PQ+QB取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點(diǎn)P、Q的位置是如何找到的_____(不要求證明).
參考答案
一、選擇題(共10小題,每小題3分,共30分)
1、B
【解析】
分析:過點(diǎn)D作DE⊥AB于E,先求出CD的長,再根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=CD=2,然后根據(jù)三角形的面積公式列式計(jì)算即可得解.
詳解:如圖,過點(diǎn)D作DE⊥AB于E,
∵AB=8,CD=2,
∵AD是∠BAC的角平分線,
∴DE=CD=2,
∴△ABD的面積
故選B.
點(diǎn)睛:考查角平分線的性質(zhì),角平分線上的點(diǎn)到角兩邊的距離相等.
2、D
【解析】
試題解析:設(shè)小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.
3、A
【解析】
設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征分別進(jìn)行判斷.
【詳解】
設(shè)反比例函數(shù)y=(k為常數(shù),k≠0),
∵反比例函數(shù)的圖象經(jīng)過點(diǎn)(-2,3),
∴k=-2×3=-6,
而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,
∴點(diǎn)(2,-3)在反比例函數(shù)y=- 的圖象上.
故選A.
【點(diǎn)睛】
本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.
4、A
【解析】
根據(jù)上表數(shù)據(jù),出現(xiàn)“和為7”的頻率將穩(wěn)定在它的概率附近,估計(jì)出現(xiàn)“和為7”的概率即可.
【詳解】
由表中數(shù)據(jù)可知,出現(xiàn)“和為7”的概率為0.33.
故選A.
【點(diǎn)睛】
本題考查了利用頻率估計(jì)概率:大量重復(fù)實(shí)驗(yàn)時(shí),事件發(fā)生的頻率在某個(gè)固定位置左右擺動(dòng),并且擺動(dòng)的幅度越來越小,可以用頻率的集中趨勢(shì)來估計(jì)概率,這個(gè)固定的近似值就是這個(gè)事件的概率.用頻率估計(jì)概率得到的是近似值,隨實(shí)驗(yàn)次數(shù)的增多,值越來越精確.
5、B
【解析】
二次函數(shù),
所以二次函數(shù)的開口向下,當(dāng)x<2,y隨x的增大而增大,選項(xiàng)A錯(cuò)誤;
當(dāng)x=2時(shí),取得最大值,最大值為-3,選項(xiàng)B正確;
頂點(diǎn)坐標(biāo)為(2,-3),選項(xiàng)C錯(cuò)誤;
頂點(diǎn)坐標(biāo)為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點(diǎn),選項(xiàng)D錯(cuò)誤,
故答案選B.
考點(diǎn):二次函數(shù)的性質(zhì).
6、A
【解析】
【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個(gè)小題中的結(jié)論是否正確,從而可以解答本題.
【詳解】由圖可得,
甲步行的速度為:240÷4=60米/分,故①正確,
乙走完全程用的時(shí)間為:2400÷(16×60÷12)=30(分鐘),故②錯(cuò)誤,
乙追上甲用的時(shí)間為:16﹣4=12(分鐘),故③錯(cuò)誤,
乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)距離是:2400﹣(4+30)×60=360米,故④錯(cuò)誤,
故選A.
【點(diǎn)睛】本題考查了函數(shù)圖象,弄清題意,讀懂圖象,從中找到必要的信息是解題的關(guān)鍵.
7、C
【解析】
根據(jù)題意可以寫出y關(guān)于x的函數(shù)關(guān)系式,然后令x=40求出相應(yīng)的y值,即可解答本題.
【詳解】
解:由題意可得,
y==,
當(dāng)x=40時(shí),y=6,
故選C.
【點(diǎn)睛】
本題考查了反比例函數(shù)的圖象,根據(jù)題意列出函數(shù)解析式是解決此題的關(guān)鍵.
8、C
【解析】
試題分析:由題意可得根的判別式,即可得到關(guān)于k的不等式,解出即可.
由題意得,解得
故選C.
考點(diǎn):一元二次方程的根的判別式
點(diǎn)評(píng):解答本題的關(guān)鍵是熟練掌握一元二次方程,當(dāng)時(shí),方程有兩個(gè)不相等實(shí)數(shù)根;當(dāng)時(shí),方程的兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程沒有實(shí)數(shù)根.
9、A
【解析】
連AC,OC,BC.線段CF掃過的面積=扇形MAH的面積+△MCH的面積,從而證明即可解決問題.
【詳解】
如下圖,連AC,OC,BC,設(shè)CD交AB于H,
∵CD垂直平分線段OB,
∴CO=CB,
∵OC=OB,
∴OC=OB=BC,
∴,
∵AB是直徑,
∴,
∴,
∵,
∴點(diǎn)F在以AC為直徑的⊙M上運(yùn)動(dòng),當(dāng)E從A運(yùn)動(dòng)到D時(shí),點(diǎn)F從A運(yùn)動(dòng)到H,連接MH,
∵M(jìn)A=MH,
∴
∴,
∵,
∴CF掃過的面積為,
故選:A.
【點(diǎn)睛】
本題主要考查了陰影部分面積的求法,熟練掌握扇形的面積公式及三角形的面積求法是解決本題的關(guān)鍵.
10、D
【解析】
如圖,過點(diǎn)C作CD⊥x軸于點(diǎn)D,
∵點(diǎn)C的坐標(biāo)為(3,4),∴OD=3,CD=4.
∴根據(jù)勾股定理,得:OC=5.
∵四邊形OABC是菱形,∴點(diǎn)B的坐標(biāo)為(8,4).
∵點(diǎn)B在反比例函數(shù)(x>0)的圖象上,
∴.
故選D.
二、填空題(本大題共6個(gè)小題,每小題3分,共18分)
11、1≤x≤1
【解析】
此題需要運(yùn)用極端原理求解;①BP最小時(shí),F(xiàn)、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進(jìn)而可求得BP的值,即BP的最小值;②BP最大時(shí),E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=1,即BP的最大值為1;
【詳解】
解:如圖:①當(dāng)F、D重合時(shí),BP的值最?。?br />
根據(jù)折疊的性質(zhì)知:AF=PF=5;
在Rt△PFC中,PF=5,F(xiàn)C=1,則PC=4;
∴BP=xmin=1;
②當(dāng)E、B重合時(shí),BP的值最大;
由折疊的性質(zhì)可得BP=AB=1.
所以BP的取值范圍是:1≤x≤1.
故答案為:1≤x≤1.
【點(diǎn)睛】
此題主要考查的是圖形的翻折變換,正確的判斷出x的兩種極值下F、E點(diǎn)的位置,是解決此題的關(guān)鍵.
12、①②④
【解析】
試題解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根,正確;
②∵和符號(hào)相同,和符號(hào)也相同,
∴如果方程M有兩根符號(hào)相同,那么方程N(yùn)的兩根符號(hào)也相同,正確;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,錯(cuò)誤;
④∵5是方程M的一個(gè)根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N(yùn)的一個(gè)根,正確.
故正確的是①②④.
13、9.1
【解析】
建立直角坐標(biāo)系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點(diǎn)的縱坐標(biāo)
【詳解】
如圖,以地面為x軸,門洞中點(diǎn)為O點(diǎn),畫出y軸,建立直角坐標(biāo)系
由題意可知各點(diǎn)坐標(biāo)為A(-4,0)B(4,0)D(-3,4)
設(shè)拋物線解析式為y=ax2+c(a≠0)把B、D兩點(diǎn)帶入解析式
可得解析式為,則C(0,)
所以門洞高度為m≈9.1m
【點(diǎn)睛】
本題考查二次函數(shù)的簡單應(yīng)用,能夠建立直角坐標(biāo)系解出二次函數(shù)解析式是本題關(guān)鍵
14、21
【解析】
每次約有111名乘客,如飛機(jī)一旦失事,每位乘客賠償41萬人民幣,共計(jì)4111萬元,由題意可得一次飛行中飛機(jī)失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應(yīng)該收取保險(xiǎn)費(fèi)每人 =21元.
15、-6
【解析】
分析:∵菱形的兩條對(duì)角線的長分別是6和4,
∴A(﹣3,2).
∵點(diǎn)A在反比例函數(shù)的圖象上,
∴,解得k=-6.
【詳解】
請(qǐng)?jiān)诖溯斎朐斀猓?br />
16、4.1.
【解析】
取CD的值中點(diǎn)M,連接GM,F(xiàn)M.首先證明四邊形EFMG是菱形,推出當(dāng)EF⊥EG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,由此可得結(jié)論.
【詳解】
解:取CD的值中點(diǎn)M,連接GM,F(xiàn)M.
∵AG=CG,AE=EB,
∴GE是△ABC的中位線
∴EG=BC,
同理可證:FM=BC,EF=GM=AD,
∵AD=BC=6,
∴EG=EF=FM=MG=3,
∴四邊形EFMG是菱形,
∴當(dāng)EF⊥EG時(shí),四邊形EFMG是矩形,此時(shí)四邊形EFMG的面積最大,最大面積為9,
∴△EGF的面積的最大值為S四邊形EFMG=4.1,
故答案為4.1.
【點(diǎn)睛】
本題主要考查菱形的判定和性質(zhì),利用了三角形中位線定理,掌握菱形的判定:四條邊都相等的四邊形是菱形是解題的關(guān)鍵.
三、解答題(共8題,共72分)
17、(1);(2)列表見解析,.
【解析】
試題分析:(1)一共有3種等可能的結(jié)果總數(shù),摸出標(biāo)有數(shù)字2的小球有1種可能,因此摸出的球?yàn)闃?biāo)有數(shù)字2的小球的概率為;(2)利用列表得出共有9種等可能的結(jié)果數(shù),再找出點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù),可求得結(jié)果.
試題解析:(1)P(摸出的球?yàn)闃?biāo)有數(shù)字2的小球)=;(2)列表如下:
小華
小麗
-1
0
2
-1
(-1,-1)
(-1,0)
(-1,2)
0
(0,-1)
(0,0)
(0,2)
2
(2,-1)
(2,0)
(2,2)
共有9種等可能的結(jié)果數(shù),其中點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi)(包括邊界)的結(jié)果數(shù)為6,
∴P(點(diǎn)M落在如圖所示的正方形網(wǎng)格內(nèi))==.
考點(diǎn):1列表或樹狀圖求概率;2平面直角坐標(biāo)系.
18、(1)15人;(2)補(bǔ)圖見解析.(3).
【解析】
(1)根據(jù)三班有6人,占的百分比是40%,用6除以所占的百分比即可得總?cè)藬?shù);
(2)用總?cè)藬?shù)減去一、三、四班的人數(shù)得到二班的人數(shù)即可補(bǔ)全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數(shù);
(3)根據(jù)題意畫出樹狀圖,得出所有可能,進(jìn)而求恰好選出一名男生和一名女生的概率.
【詳解】
解:(1)七年級(jí)已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù):6÷40%=15人;
(2)A2的人數(shù)為15﹣2﹣6﹣4=3(人)
補(bǔ)全圖形,如圖所示,
A1所在圓心角度數(shù)為:×360°=48°;
(3)畫出樹狀圖如下:
共6種等可能結(jié)果,符合題意的有3種
∴選出一名男生一名女生的概率為:P=.
【點(diǎn)睛】
本題考查了條形圖與扇形統(tǒng)計(jì)圖,概率等知識(shí),準(zhǔn)確識(shí)圖,從圖中發(fā)現(xiàn)有用的信息,正確根據(jù)已知畫出樹狀圖得出所有可能是解題關(guān)鍵.
19、(1)詳見解析;(2);(3)
【解析】
(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=∠OCA,由平行線的性質(zhì)得到∠A=∠BOP,∠ACO=∠COP,等量代換得到∠COP=∠BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)過O作OD⊥AC于D,根據(jù)相似三角形的性質(zhì)得到CD?OP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;
(3)連接BC,根據(jù)勾股定理得到BC==12,當(dāng)M與A重合時(shí),得到d+f=12,當(dāng)M與B重合時(shí),得到d+f=9,于是得到結(jié)論.
【詳解】
(1)連接OC,
∵OA=OC,
∴∠A=∠OCA,
∵AC∥OP,
∴∠A=∠BOP,∠ACO=∠COP,
∴∠COP=∠BOP,
∵PB是⊙O的切線,AB是⊙O的直徑,
∴∠OBP=90°,
在△POC與△POB中,
,
∴△COP≌△BOP,
∴∠OCP=∠OBP=90°,
∴PC是⊙O的切線;
(2)過O作OD⊥AC于D,
∴∠ODC=∠OCP=90°,CD=AC,
∵∠DCO=∠COP,
∴△ODC∽△PCO,
∴,
∴CD?OP=OC2,
∵OP=AC,
∴AC=OP,
∴CD=OP,
∴OP?OP=OC2
∴,
∴sin∠CPO=;
(3)連接BC,
∵AB是⊙O的直徑,
∴AC⊥BC,
∵AC=9,AB=1,
∴BC==12,
當(dāng)CM⊥AB時(shí),
d=AM,f=BM,
∴d+f=AM+BM=1,
當(dāng)M與B重合時(shí),
d=9,f=0,
∴d+f=9,
∴d+f的取值范圍是:9≤d+f≤1.
【點(diǎn)睛】
本題考查了切線的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行線的性質(zhì),圓周角定理,正確的作出輔助線是解題的關(guān)鍵.
20、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商場(chǎng)每天銷售這種商品的銷售利潤不能達(dá)到500元.
【解析】
(1)此題可以按等量關(guān)系“每天的銷售利潤=(銷售價(jià)﹣進(jìn)價(jià))×每天的銷售量”列出函數(shù)關(guān)系式,并由售價(jià)大于進(jìn)價(jià),且銷售量大于零求得自變量的取值范圍.
(2)根據(jù)(1)所得的函數(shù)關(guān)系式,利用配方法求二次函數(shù)的最值即可得出答案.
【詳解】
(1)由題意得:每件商品的銷售利潤為(x﹣2)元,那么m件的銷售利潤為y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求關(guān)系式為y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售價(jià)定為42元時(shí)獲得的利潤最大,最大銷售利潤是432元.
∵500>432,∴商場(chǎng)每天銷售這種商品的銷售利潤不能達(dá)到500元.
【點(diǎn)睛】
本題考查了二次函數(shù)在實(shí)際生活中的應(yīng)用,解答本題的關(guān)鍵是根據(jù)等量關(guān)系:“每天的銷售利潤=(銷售價(jià)﹣進(jìn)價(jià))×每天的銷售量”列出函數(shù)關(guān)系式,另外要熟練掌握二次函數(shù)求最值的方法.
21、 (Ⅰ)發(fā)射臺(tái)與雷達(dá)站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.
【解析】
(Ⅰ)在Rt△ACD中,根據(jù)銳角三角函數(shù)的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進(jìn)而可得AB的長,即可得答案.
【詳解】
(Ⅰ)在中,,≈0.74,
∴.
答:發(fā)射臺(tái)與雷達(dá)站之間的距離約為.
(Ⅱ)在中,,
∴.
∵在中,,
∴.
∴.
答:這枚火箭從到的平均速度大約是.
【點(diǎn)睛】
本題考查解直角三角形的應(yīng)用,熟練掌握銳角三角函數(shù)的定義是解題關(guān)鍵.
22、(1)1;(2)經(jīng)過2秒或2秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等
【解析】
試題分析:(1)根據(jù)OB=3OA,結(jié)合點(diǎn)B的位置即可得出點(diǎn)B對(duì)應(yīng)的數(shù);
(2)設(shè)經(jīng)過x秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等,找出點(diǎn)M、N對(duì)應(yīng)的數(shù),再分點(diǎn)M、點(diǎn)N在點(diǎn)O兩側(cè)和點(diǎn)M、點(diǎn)N重合兩種情況考慮,根據(jù)M、N的關(guān)系列出關(guān)于x的一元一次方程,解之即可得出結(jié)論.
試題解析:(1)∵OB=3OA=1,
∴B對(duì)應(yīng)的數(shù)是1.
(2)設(shè)經(jīng)過x秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等,
此時(shí)點(diǎn)M對(duì)應(yīng)的數(shù)為3x-2,點(diǎn)N對(duì)應(yīng)的數(shù)為2x.
①點(diǎn)M、點(diǎn)N在點(diǎn)O兩側(cè),則
2-3x=2x,
解得x=2;
②點(diǎn)M、點(diǎn)N重合,則,
3x-2=2x,
解得x=2.
所以經(jīng)過2秒或2秒,點(diǎn)M、點(diǎn)N分別到原點(diǎn)O的距離相等.
23、(1)證明見解析;(2)1
【解析】
分析:(1)利用“AAS”證△ADF≌△EAB即可得;
(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,據(jù)此知AD=2DF,根據(jù)DF=AB可得答案.
詳解:(1)證明:在矩形ABCD中,∵AD∥BC,
∴∠AEB=∠DAF,
又∵DF⊥AE,
∴∠DFA=90°,
∴∠DFA=∠B,
又∵AD=EA,
∴△ADF≌△EAB,
∴DF=AB.
(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,
∴∠FDC=∠DAF=30°,
∴AD=2DF,
∵DF=AB,
∴AD=2AB=1.
點(diǎn)睛:本題主要考查矩形的性質(zhì),解題的關(guān)鍵是掌握矩形的性質(zhì)和全等三角形的判定與性質(zhì)及直角三角形的性質(zhì).
24、 作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最小
【解析】
(1)利用勾股定理計(jì)算即可;
(2)作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最小.
【詳解】
解:(1)AC==.
故答案為.
(2)作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。?br />
故答案為作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。?br />
【點(diǎn)睛】
本題考查作圖-應(yīng)用與設(shè)計(jì),勾股定理,軸對(duì)稱-最短問題,垂線段最短等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱,根據(jù)垂線段最短解決最短問題,屬于中考??碱}型.
這是一份2022年甘肅省高臺(tái)縣重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)模擬預(yù)測(cè)題含解析,共23頁。試卷主要包含了一、單選題,下列計(jì)算正確的是等內(nèi)容,歡迎下載使用。
這是一份2022屆浙江省臺(tái)州仙居重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)模擬預(yù)測(cè)題含解析,共17頁。試卷主要包含了在代數(shù)式 中,m的取值范圍是等內(nèi)容,歡迎下載使用。
這是一份2022屆蘇州高新區(qū)實(shí)驗(yàn)重點(diǎn)達(dá)標(biāo)名校中考數(shù)學(xué)模擬預(yù)測(cè)題含解析,共25頁。試卷主要包含了下列計(jì)算正確的是,用一根長為a等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功