1.通過實驗、操作、思考活動認識位似圖形;會利用位似的方法把一個圖形按比例放大或縮??;
2.理解位似法畫相似圖形的原理,能正確選擇位似中心畫相似圖形。
學習重點:掌握位似圖形的性質(zhì),利用位似圖原理將一個圖形放大或縮?。?br>學習難點:利用位似圖原理將一個圖形放大或縮?。?br>二、知識梳理
1.如圖,若DE∥BC,則嗎?為什么?若,
則DE∥BC嗎?為什么?
總結(jié):
1.兩個多邊形不僅相似,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,像這樣的兩個圖形叫做位似形,這個點叫做位似中心。利用位似形可以將一個圖形放大或縮小.
2.位似形的有關(guān)性質(zhì):
(1)兩個位似形一定是相似形,相似形不一定是位似形;(2)各對對應(yīng)點所在的直線都經(jīng)過同一點;(3)各對對應(yīng)頂點到位似中心的距離之比等于相似比;(4)位似形的對應(yīng)線段所在直線平行或經(jīng)過位似中心;(5)對應(yīng)邊互相平行(或在同一直線);
3.說明:(1)位似形中的相似比又稱位似比;(2)畫位似形時,關(guān)鍵是確定位似中心,位似中心可以在多邊形的形外、形內(nèi)、邊上或頂點處;(3)中心對稱圖形是位似形(位似比為
三、典例精講
例1. 如圖,在平面直角坐標系中,△OAB的頂點坐標分別為O(0,0)、A(5,4)、B(3,0),分別將點A,B的橫坐標、縱坐標都乘2.得到相應(yīng)的點A′,B′坐標.
(1)畫△OA′B′;
(2)△OA′B′與△OAB是位似形嗎?為什么?
例2. 印刷一張矩形的張貼廣告(如圖),它的印刷面積是32dm2,上下空白各1dm,兩邊空白各0.5dm。設(shè)印刷部分從上到下的長是xdm,四周空白處的面積為Sdm2。
(1)求S與x的關(guān)系式;
(2)當要求四周空白處的面積為18dm2時,求用來印刷這張廣告的紙張的長和寬各是多少?
(3)在(2)的條件下,內(nèi)外兩個圖形是相似圖形嗎?
四、課堂鞏固:
1.如圖,位似圖形由三角尺與其燈光照射下的中心投影組成,相似比為2:5,且三角尺的一邊長為8cm,則投影三角形的對應(yīng)邊長為( )
A.8cm B.20cm C.3.2cm D.10cm
2.如圖,△ABC中,A,B兩個頂點在X軸的上方,點C 的坐標是(-1,0),以點C為位似中心,在X軸的下方作△ABC的位似圖形△A′B′C′,并把△ABC的邊長放大到原來的2倍,設(shè)點B的對應(yīng)點B′的橫坐標是a,則點B的橫坐標是( )
A. B. C. D.
第1題 第2題 第3題
3.如圖,在對Rt△OAB依次進行位似、軸對稱和平移變換后得到△O′A′B′.
O
A
B
x
O′
B′
A′
y
(1)在坐標紙上畫出這幾次變換相應(yīng)的圖形;
(2)設(shè)P(x,y)為△OAB邊上任一點,依次
寫出這幾次變換后點P對應(yīng)點的坐標.
3.(1O
A
B
x
O′
B′
A′
y

(2)設(shè)坐標紙中方格邊長為單位1,則
P(x,y)
(2x,2y)(2x,2y)
(,2y)
(,)
五、課后作業(yè):
1.下列關(guān)于位似圖形的說法:①相似圖形一定是位似圖形,位似圖形一定是相似圖形;②位似圖形一定有位似中心;③如果兩個圖形是相似圖形,且每組對應(yīng)點的連線所在的直線都經(jīng)過同一個點,那么這兩個圖形是位似圖形;④位似圖形上任意兩點與位似中心的距離之比等于位似比.其中正確的是_______.(只填序號)
2.如圖,△ABC與△A'B'C'是位似圖形,且位似比是1:2,若AB=2 cm,則A'B'=_______cm,并在圖中畫出位似中心O.
3.如圖,五邊形ABCDE與五邊形A'B'C'D'E'是位似圖形,且位似比為2.如果五邊形ABCDE的面積為16 cm2,周長為20 cm,那么五邊形A'B'C'D'E'的面積為_______,周長為_______.
4.如圖,小“魚”與大“魚”是位似圖形,如果小“魚”上的一個“頂點”的坐標為(a,b),那么大“魚”上對應(yīng)“頂點”的坐標為 ( )
A.(-a,-2b) B.(-2a,-b) C.(-2a,-2b) D.(-2b,-2a)
5.△ABC三個頂點的坐標分別是A(0,0)、B(2,2)、C(3,1),以點A為位似中心,試將△ABC放大,使放大后的△DEF與△ABC對應(yīng)邊的比為2:1.并求出放大后的三角形各頂點的坐標.
6.下列說法正確的是 ( )
A.兩個等腰三角形一定是位似圖形
B.位似圖形一定是相似的幾何圖形
C.位似圖形對應(yīng)頂點的連線一定不在同一直線上
D.位似圖形一定是全等圖形
7.如圖,在菱形ABCD中,對角線AC、BD相交于點O、M、N分別是邊AB、AD的中點,連接OM、ON、MN,則下列敘述正確的是 ( )
A.△AOM和△AON都是等邊三角形
B.四邊形MBON和四邊形MODN都是菱形
C.四邊形AMON與四邊形ABCD是位似圖形
D.四邊形MBCO和四邊形NDCO都是等腰梯形
8.如圖,在△ABC中,A、B兩個頂點在x軸的上方,點C的坐標是(-1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,記所得圖形是△A'B'C'.設(shè)點B的對應(yīng)點B'的橫坐標是a,則點B的橫坐標是 ( )
A.-a B.-(a+1) C.-(a-1) D.-(a+3)
9.(2014.玉林)△ABC與△A′B′C′是位似圖形,且△ABC與△A′B′C′的位似比是1:2,已知△ABC的面積是3,則△A′B′C′的面積是( )
A.3 B.6 C.9 D.12
10.(2014.武漢)如圖,線段AB兩個端點的坐標分別為A(6,6),B(8,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C的坐標為( )
A.(3,3) B.(4,3) C.(3,1) D.(4,1)
11.如圖,正方形OEFG和正方形ABCD是位似圖形,點F的坐標為(1,1),點C的坐標為(4,2),則這兩個正方形位似中心的坐標是_______.
12.如圖,△ABC與△A'B'C'是位似圖形,且頂點都在格點上,則位似中心的坐標是_______.
13.如圖,以菱形ABCD的對角線所在的直線為坐標軸建立直角坐標系,以點O為位似中心,在圖中畫一個與已知菱形位似的菱形,使其面積擴大4倍.
14.如圖,點E、F分別是ABCD的邊AB和CD的延長線上的點,連接EF,分別交AD、BC于點H、G,寫出圖中的位似三角形.
參考答案
1.②③ 2.4 圖略 3.4 cm2 10 cm 4.C
5.圖略(0,0),(4,4),(6,2)或(0,0),(-4,-4),(-6,-2)
6.B 7.C 8.D 9.D 10.A
11.(-2,0)12.(9,0) 13.略
14.圖中的位似三角形有△EBG與△EAH、△EBG與△FCG、△EBG與△FDH、△EAH與△FCG、△FDH與△FCG、△EAH與△FDH

相關(guān)學案

數(shù)學九年級下冊第二十七章 相似27.3 位似導學案:

這是一份數(shù)學九年級下冊第二十七章 相似27.3 位似導學案,共3頁。學案主要包含了自主預習,合作探究,歸納反思,達標測評等內(nèi)容,歡迎下載使用。

初中數(shù)學人教版九年級下冊27.3 位似第1課時學案設(shè)計:

這是一份初中數(shù)學人教版九年級下冊27.3 位似第1課時學案設(shè)計,共6頁。學案主要包含了新課導入,分層學習,評價等內(nèi)容,歡迎下載使用。

華師大版九年級上冊23.5 位似圖形學案:

這是一份華師大版九年級上冊23.5 位似圖形學案,共8頁。學案主要包含了即學即練,題后總結(jié)等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)學案 更多

九年級上冊相似--6位似圖形學案

九年級上冊相似--6位似圖形學案

數(shù)學九年級上冊第23章 圖形的相似23.5 位似圖形學案

數(shù)學九年級上冊第23章 圖形的相似23.5 位似圖形學案

初中數(shù)學北師大版九年級上冊6 利用相似三角形測高導學案

初中數(shù)學北師大版九年級上冊6 利用相似三角形測高導學案

2020-2021學年6 利用相似三角形測高導學案

2020-2021學年6 利用相似三角形測高導學案

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期末專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部