
?
備戰(zhàn)2022數(shù)學(xué)中考二次函數(shù)專項(xiàng)復(fù)習(xí)
一、單選題
1.對于函數(shù)y= =ax2-(a+1)x+1,甲和乙分別得出一個(gè)結(jié)論:
甲:若該函數(shù)圖象與x軸只有一個(gè)交點(diǎn),則a=1;
乙:方程ax2- (a+1)x+1=0至少有一個(gè)整數(shù)根.
甲和乙所得結(jié)論的正確性應(yīng)是( ?。?br />
A.只有甲正確 B.只有乙正確
C.甲乙都正確 D.甲乙都不正確
2.將拋物線 y=x2?2x?1 向上平移1個(gè)單位,平移后所得拋物線的表達(dá)式是( ?。?
A.y=x2?2x B.y=x2?2x?2
C.y=x2?x?1 D.y=x2?3x?1 .
3.拱橋的形狀是拋物線,其函數(shù)關(guān)系式為y=?13x2,當(dāng)水面離橋頂?shù)母叨葹?53m時(shí),水面的寬度為( ?。┟?
A.8 B.9 C.10 D.11
4.如圖,一個(gè)矩形的長比寬多3cm,矩形的面積是Scm2.設(shè)矩形的寬為xcm,當(dāng)x在一定范圍內(nèi)變化時(shí),S隨x的變化而變化,則S與x滿足的函數(shù)關(guān)系是( ?。?br />
A.S=4x+6 B.S=4x-6 C.S=x2+3x D.S=x2-3x
5.已知二次函數(shù)y=ax2+bx+c與自變量x的部分對應(yīng)值如表,下列說法不正確的是( ?。?br />
x
…
﹣1
0
1
3
…
y
…
﹣3
1
3
1
…
A.a(chǎn)<0
B.方程ax2+bx+c=﹣2的正根在4與5之間
C.2a+b>0
D.若點(diǎn)(5,y1)、(﹣32,y2)都在函數(shù)圖象上,則y1<y2
6.函數(shù)y=ax+1與y=ax2+bx+1(a≠0)的圖象可能是( ?。?br />
A.
B.
C.
D.
7.在求解方程ax2+bx+c=0(a≠0)時(shí),先在平面直角坐標(biāo)系中畫出函數(shù)y=ax2+bx+c的圖象,觀察圖象與x軸的兩個(gè)交點(diǎn),這兩個(gè)交點(diǎn)的橫坐標(biāo)可以看作是方程的近似解,分析右圖中的信息,方程的近似解是( ?。?br />
A.x1=?3,x2=2 B.x1=?3,x2=3
C.x1=?2,x2=2 D.x1=?2,x2=3
8.新定義:若一個(gè)點(diǎn)的縱坐標(biāo)是橫坐標(biāo)的2倍,則稱這個(gè)點(diǎn)為二倍點(diǎn).若二次函數(shù)y=x2?x+c(c為常數(shù))在?20) .
【分析】 2019年至2021年 ,2019年蔬菜產(chǎn)量為100萬噸,即可得出答案。
12.【答案】(1,2)
【解析】【解答】解:根據(jù)題意得:該函數(shù)為y=x2?2x+3,
∵y=x2?2x+3=(x?1)2+2
∴當(dāng) x=1時(shí),有最小值,最小值為 y=2,
即E(x, x2?2x+3)圖象上的最低點(diǎn)是(1,2).
故答案為:(1,2).
【分析】根據(jù)題意得:該函數(shù)為y=x2-2x+3,將其化為頂點(diǎn)式,據(jù)此可得最低點(diǎn)的坐標(biāo).
13.【答案】3
【解析】【解答】解:由表格得:二次函數(shù)的對稱軸是直線x=0+22=1.
∵拋物線與x軸的一個(gè)交點(diǎn)為(-1,0),
∴拋物線與x軸另一個(gè)交點(diǎn)為(3,0),
∴該二次函數(shù)圖象向左平移3個(gè)單位,圖象經(jīng)過原點(diǎn);或該二次函數(shù)圖象向右平移1個(gè)單位,圖象經(jīng)過原點(diǎn).
故答案為:3.
【分析】由表格可得:二次函數(shù)的對稱軸是直線x= 0+22=1,根據(jù)對稱性求出拋物線與x軸的另一個(gè)交點(diǎn)的坐標(biāo),接下來根據(jù)點(diǎn)的平移規(guī)律進(jìn)行解答.
14.【答案】2025
【解析】【解答】解:∵ 點(diǎn)(m,0)在二次函數(shù)y=x2﹣3x+2的圖象上,
∴m2?3m+2=0
即m2?3m=?2;
∴2m2﹣6m+2029=2(m2?3m)+2029=2×(?2)+2029=2025;
故應(yīng)填2025.
【分析】將點(diǎn)(m,0)代入二次函數(shù)函數(shù)可得m2?3m+2=0,再將代數(shù)式 2m2﹣6m+2029變形為2(m2?3m)+2029,再計(jì)算即可。
15.【答案】①②④
【解析】【解答】解:∵二次函數(shù)y=ax2+bx+c的部分圖象與y軸的交點(diǎn)為(0,3),
∴c=3,故①正確;
∵拋物線的對稱軸為直線x=1,
∴ ?b2a=1 ,即 2a+b=0 ,故②正確;
∵拋物線與x軸的一個(gè)交點(diǎn)在-1到0之間,拋物線對稱軸為直線x=1,
∴拋物線與x軸的另一個(gè)交點(diǎn)在2到3之間,故④正確;
∵拋物線開口向下,
∴a
這是一份備戰(zhàn)中考數(shù)學(xué)《重難點(diǎn)解讀?專項(xiàng)訓(xùn)練》專題03 二次函數(shù)與面積有關(guān)的問題(專項(xiàng)訓(xùn)練),文件包含專題03二次函數(shù)與面積有關(guān)問題專項(xiàng)訓(xùn)練原卷版docx、專題03二次函數(shù)與面積有關(guān)問題專項(xiàng)訓(xùn)練解析版docx等2份試卷配套教學(xué)資源,其中試卷共33頁, 歡迎下載使用。
這是一份中考數(shù)學(xué)二輪專項(xiàng)復(fù)習(xí)——二次函數(shù)(壓軸題專項(xiàng))(含答案),共15頁。
這是一份初中數(shù)學(xué)中考復(fù)習(xí) 備戰(zhàn)2020年中考數(shù)學(xué)一輪復(fù)習(xí)——二次函數(shù)(壓軸題專項(xiàng))(含詳細(xì)解析)
微信掃碼,快速注冊
注冊成功