
一.課標(biāo)要求:
1.分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理
通過(guò)實(shí)例,總結(jié)出分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理;能根據(jù)具體問(wèn)題的特征,選擇分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;
2.排列與組合
通過(guò)實(shí)例,理解排列、組合的概念;能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,并能解決簡(jiǎn)單的實(shí)際問(wèn)題;
3.二項(xiàng)式定理
能用計(jì)數(shù)原理證明二項(xiàng)式定理; 會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開(kāi)式有關(guān)的簡(jiǎn)單問(wèn)題。
二.命題走向
本部分內(nèi)容主要包括分類計(jì)數(shù)原理、分步計(jì)數(shù)原理、排列與組合、二項(xiàng)式定理三部分;考查內(nèi)容:(1)兩個(gè)原理;(2)排列、組合的概念,排列數(shù)和組合數(shù)公式,排列和組合的應(yīng)用;(3)二項(xiàng)式定理,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)及二項(xiàng)式系數(shù)和。
排列、組合不僅是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,而且在實(shí)際中有廣泛的應(yīng)用,因此新高考會(huì)有題目涉及;二項(xiàng)式定理是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,也是高考每年必考內(nèi)容,新高考會(huì)繼續(xù)考察。
考察形式:?jiǎn)为?dú)的考題會(huì)以選擇題、填空題的形式出現(xiàn),屬于中低難度的題目,排列組合有時(shí)與概率結(jié)合出現(xiàn)在解答題中難度較小,屬于高考題中的中低檔題目;預(yù)測(cè)2007年高考本部分內(nèi)容一定會(huì)有題目涉及,出現(xiàn)選擇填空的可能性較大,與概率相結(jié)合的解答題出現(xiàn)的可能性較大。
三.要點(diǎn)精講
1.排列、組合、二項(xiàng)式知識(shí)相互關(guān)系表
2.兩個(gè)基本原理
(1)分類計(jì)數(shù)原理中的分類;
(2)分步計(jì)數(shù)原理中的分步;
正確地分類與分步是學(xué)好這一章的關(guān)鍵。
3.排列
(1)排列定義,排列數(shù)
(2)排列數(shù)公式:系 ==n·(n-1)…(n-m+1);
(3)全排列列: =n!;
(4)記住下列幾個(gè)階乘數(shù):1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;
4.組合
(1)組合的定義,排列與組合的區(qū)別;
(2)組合數(shù)公式:Cnm==;
(3)組合數(shù)的性質(zhì)
①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即 Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;
5.二項(xiàng)式定理
(1)二項(xiàng)式展開(kāi)公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;
(2)通項(xiàng)公式:二項(xiàng)式展開(kāi)式中第k+1項(xiàng)的通項(xiàng)公式是:Tk+1=Cnkan-kbk;
6.二項(xiàng)式的應(yīng)用
(1)求某些多項(xiàng)式系數(shù)的和;
(2)證明一些簡(jiǎn)單的組合恒等式;
(3)證明整除性。①求數(shù)的末位;②數(shù)的整除性及求系數(shù);③簡(jiǎn)單多項(xiàng)式的整除問(wèn)題;
(4)近似計(jì)算。當(dāng)|x|充分小時(shí),我們常用下列公式估計(jì)近似值:
①(1+x)n≈1+nx;②(1+x)n≈1+nx+x2;(5)證明不等式。
第二部分 典型題
排列組合問(wèn)題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問(wèn)題,首先要認(rèn)真審題,弄清楚是排列問(wèn)題、組合問(wèn)題還是排列與組合綜合問(wèn)題;其次要抓住問(wèn)題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉?lái)處理。
解決排列組合綜合性問(wèn)題的一般過(guò)程如下:
1.認(rèn)真審題弄清要做什么事
2.怎樣做才能完成所要做的事,即采取分步還是分類,或是分步與分類同時(shí)進(jìn)行,確定分多少步及多少類。
3.確定每一步或每一類是排列問(wèn)題(有序)還是組合(無(wú)序)問(wèn)題,元素總數(shù)是多少及取出多少個(gè)元素.
4.解決排列組合綜合性問(wèn)題,往往類與步交叉,因此必須掌握一些常用的解題策略
一.特殊元素和特殊位置優(yōu)先策略
例1.由0,1,2,3,4,5可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字五位奇數(shù).
解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置.
先排末位共有
然后排首位共有
最后排其它位置共有
由分步計(jì)數(shù)原理得
位置分析法和元素分析法是解決排列組合問(wèn)題最常用也是最基本的方法,若以元素分析為主,需先安排特殊元素,再處理其它元素.若以位置分析為主,需先滿足特殊位置的要求,再處理其它位置。若有多個(gè)約束條件,往往是考慮一個(gè)約束條件的同時(shí)還要兼顧其它條件
練習(xí)題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問(wèn)有多少不同的種法?
解一:分兩步完成;
第一步選兩葵花之外的花占據(jù)兩端和中間的位置
第二步排其余的位置:
解二:第一步由葵花去占位:
第二步由其余元素占位:
二.相鄰元素捆綁策略
例2. 7人站成一排 ,其中甲乙相鄰且丙丁相鄰, 共有多少種不同的排法.
解:可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)復(fù)合元素,再與其它元素進(jìn)行排列,同時(shí)對(duì)相鄰元素內(nèi)部進(jìn)行自排。由分步計(jì)數(shù)原理可得共有種不同的排法
要求某幾個(gè)元素必須排在一起的問(wèn)題,可以用捆綁法來(lái)解決問(wèn)題.即將需要相鄰的元素合并為一個(gè)元素,再與其它元素一起作排列,同時(shí)要注意合并元素內(nèi)部也必須排列.
練習(xí)題:某人射擊8槍,命中4槍,4槍命中恰好有3槍連在一起的情形的不同種數(shù)為 20
三.不相鄰問(wèn)題插空策略
例3.一個(gè)晚會(huì)的節(jié)目有4個(gè)舞蹈,2個(gè)相聲,3個(gè)獨(dú)唱,舞蹈節(jié)目不能連續(xù)出場(chǎng),則節(jié)目的出場(chǎng)順序有多少種?
解:分兩步進(jìn)行第一步排2個(gè)相聲和3個(gè)獨(dú)唱共有種,第二步將4舞蹈插入第一步排好的6個(gè)元素中間包含首尾兩個(gè)空位共有種不同的方法,由分步計(jì)數(shù)原理,節(jié)目的不同順序共有 種
元素相離問(wèn)題可先把沒(méi)有位置要求的元素進(jìn)行排隊(duì)再把不相鄰元素插入中間和兩端
練習(xí)題:某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)新節(jié)目插入原節(jié)目單中,且兩個(gè)新節(jié)目不相鄰,那么不同插法的種數(shù)為 30
四.定序問(wèn)題倍縮空位插入策略
例4.7人排隊(duì),其中甲乙丙3人順序一定共有多少不同的排法
解:(倍縮法)對(duì)于某幾個(gè)元素順序一定的排列問(wèn)題,可先把這幾個(gè)元素與其他元素一起進(jìn)行排列,然后用總排列數(shù)除以這幾個(gè)元素之間的全排列數(shù),則共有不同排法種數(shù)是:
(空位法)設(shè)想有7把椅子讓除甲乙丙以外的四人就坐共有種方法,其余的三個(gè)位置甲乙丙共有 1種坐法,則共有種方法。
思考:可以先讓甲乙丙就坐嗎?
(插入法)先排甲乙丙三個(gè)人,共有1種排法,再把其余4四人依次插入共有 方法
定序問(wèn)題可以用倍縮法,還可轉(zhuǎn)化為占位插
空模型處理
練習(xí)題:10人身高各不相等,排成前后排,每排5人,要求從左至右身高逐漸增加,共有多少排法?
(解析:首先,從10個(gè)人當(dāng)中任選5個(gè)人站第一排,有C10 5 種,然后按從高到低排只有1種,即為C10 5*1=C10 5;
然后,剩下的5個(gè)人站第二排,按從高到低排只有1種。
所以,就為C10 5.)
五.重排問(wèn)題求冪策略
例5.把6名實(shí)習(xí)生分配到7個(gè)車間實(shí)習(xí),共有多少種不同的分法
解:完成此事共分六步:把第一名實(shí)習(xí)生分配到車間有 7 種分法.把第二名實(shí)習(xí)生分配到車間也有7種分依此類推,由分步計(jì)數(shù)原理共有種不同的排法
允許重復(fù)的排列問(wèn)題的特點(diǎn)是以元素為研究對(duì)象,元素不受位置的約束,可以逐一安排各個(gè)元素的位置,一般地n不同的元素沒(méi)有限制地安排在m個(gè)位置上的排列數(shù)為種
練習(xí)題:
某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開(kāi)演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為 42
2. 某8層大樓一樓電梯上來(lái)8名乘客人,他們到各自的一層下電梯,下電梯的方法
六.環(huán)排問(wèn)題線排策略
例6. 8人圍桌而坐,共有多少種坐法?
解:圍桌而坐與坐成一排的不同點(diǎn)在于,坐成圓形沒(méi)有首尾之分,所以固定一人并從此位置把圓形展成直線其余7人共有(8-1)!種排法即!
一般地,n個(gè)不同元素作圓形排列,共有(n-1)!種排法.如果從n個(gè)不同元素中取出m個(gè)元素作圓形排列共有
練習(xí)題:6顆顏色不同的鉆石,可穿成幾種鉆石圈 120
七.多排問(wèn)題直排策略
例7.8人排成前后兩排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后兩排,相當(dāng)于8人坐8把椅子,可以把椅子排成一排.個(gè)特殊元素有種,再排后4個(gè)位置上的特殊元素丙有種,其余的5人在5個(gè)位置上任意排列有種,則共有種
一般地,元素分成多排的排列問(wèn)題,可歸結(jié)為一排考慮,再分段研究.
練習(xí)題:有兩排座位,前排11個(gè)座位,后排12個(gè)座位,現(xiàn)安排2人就座規(guī)定前排中間的3個(gè)座位不能坐,并且這2人不左右相鄰,那么不同排法的種數(shù)是 346
八.排列組合混合問(wèn)題先選后排策略
例8.有5個(gè)不同的小球,裝入4個(gè)不同的盒內(nèi),每盒至少裝一個(gè)球,共有多少不同的裝法.
解:第一步從5個(gè)球中選出2個(gè)組成復(fù)合元共有種方法.再把4個(gè)元素(包含一個(gè)復(fù)合元素)裝入4個(gè)不同的盒內(nèi)有種方法,根據(jù)分步計(jì)數(shù)原理裝球的方法共有
解決排列組合混合問(wèn)題,先選后排是最基本的指導(dǎo)思想.此法與相鄰元素捆綁策略相似嗎?
練習(xí)題:一個(gè)班有6名戰(zhàn)士,其中正副班長(zhǎng)各1人現(xiàn)從中選4人完成四種不同的任務(wù),每人完成一種任務(wù),且正副班長(zhǎng)有且只有1人參加,則不同的選法有 192 種
九.小集團(tuán)問(wèn)題先整體后局部策略
例9.用1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的五位數(shù)其中恰有兩個(gè)偶數(shù)夾1,5在兩個(gè)奇數(shù)之間,這樣的五位數(shù)有多少個(gè)?
解:把1,5,2,4當(dāng)作一個(gè)小集團(tuán)與3排隊(duì)共有種排法,再排小集團(tuán)內(nèi)部共有種排法,由分步計(jì)數(shù)原理共有種排法.
小集團(tuán)排列問(wèn)題中,先整體后局部,再結(jié)合其它策略進(jìn)行處理。
練習(xí)題:
1.計(jì)劃展出10幅不同的畫(huà),其中1幅水彩畫(huà),4幅油畫(huà),5幅國(guó)畫(huà), 排成一行陳列,要求同一 品種的必須連在一起,并且水彩畫(huà)不在兩端,那么共有陳列方式的種數(shù)為
2. 5男生和5女生站成一排照像,男生相鄰,女生也相鄰的排法有種
十.元素相同問(wèn)題隔板策略
例10.有10個(gè)運(yùn)動(dòng)員名額,分給7個(gè)班,每班至少一個(gè),有多少種分配方案?
解:因?yàn)?0個(gè)名額沒(méi)有差別,把它們排成一排。相鄰名額之間形成9個(gè)空隙。在9個(gè)空檔中選6個(gè)位置插個(gè)隔板,可把名額分成7份,對(duì)應(yīng)地分給7個(gè)班級(jí),每一種插板方法對(duì)應(yīng)一種分法共有種分法。
將n個(gè)相同的元素分成m份(n,m為正整數(shù)),每份至少一個(gè)元素,可以用m-1塊隔板,插入n個(gè)元素排成一排的n-1個(gè)空隙中,所有分法數(shù)為
練習(xí)題:
10個(gè)相同的球裝5個(gè)盒中,每盒至少一有多少裝法?
2 .求這個(gè)方程組的自然數(shù)解的組數(shù)
十一.正難則反總體淘汰策略
例11.從0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?
解:這問(wèn)題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有,只含有1個(gè)偶數(shù)的取法有,和為偶數(shù)的取法共有。再淘汰和小于10的偶數(shù)共9種,符合條件的取法共有
有些排列組合問(wèn)題,正面直接考慮比較復(fù)雜,而它的反面往往比較簡(jiǎn)捷,可以先求出它的反面,再?gòu)恼w中淘汰.
練習(xí)題:我們班里有43位同學(xué),從中任抽5人,正、副班長(zhǎng)、團(tuán)支部書(shū)記至少有一人在內(nèi)的抽法有多少種?
(解 43人中任抽5人的方法有 種,正副班長(zhǎng),團(tuán)支部書(shū)記都不在內(nèi)的抽法有 種,所以正副班長(zhǎng),團(tuán)支部書(shū)記至少有1人在內(nèi)的抽法有 種.)
十二.平均分組問(wèn)題除法策略
例12. 6本不同的書(shū)平均分成3堆,每堆2本共有多少分法?
解: 分三步取書(shū)得種方法,但這里出現(xiàn)重復(fù)計(jì)數(shù)的現(xiàn)象,不妨記6本書(shū)為ABCDEF,若第一步取AB,第二步取CD,第三步取EF該分法記為(AB,CD,EF),則中還有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有種取法 ,而這些分法僅是(AB,CD,EF)一種分法,故共有種分法。
平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要一定要除以(為均分的組數(shù))避免重復(fù)計(jì)數(shù)。
練習(xí)題:
1 將13個(gè)球隊(duì)分成3組,一組5個(gè)隊(duì),其它兩組4個(gè)隊(duì), 有多少分法?()
2.10名學(xué)生分成3組,其中一組4人, 另兩組3人但正副班長(zhǎng)不能分在同一組,有多少種不同的分組方法 (1540)
(把其他的8個(gè)人按照332分組,再把正副班長(zhǎng)放進(jìn)去
C(8,3)*C(5,2)*C(3,3)/A(2,2),正副班長(zhǎng)必須分別放入一個(gè)三人組和一個(gè)兩人組,共有4種可能,就再乘以4
把其他8個(gè)人按照422分組,再把正副班長(zhǎng)放進(jìn)去
C(8,4)*C(4,2)*C(2,2)/A(2,2),正副班長(zhǎng)必須分別放入兩個(gè)二人組,共有兩種可能,就在乘以2
然后相加就是結(jié)果。
列式為4*C(8,3)*C(5,2)*C(3,3)/A(2,2)+2*C(8,4)*C(4,2)*C(2,2)/A(2,2),= 1120+420=1540種)
3.某校高二年級(jí)共有六個(gè)班級(jí),現(xiàn)從外地轉(zhuǎn)入4名學(xué)生,要安排到該年級(jí)的兩個(gè)班級(jí)且每班安排2名,則不同的安排方案種數(shù)為_(kāi)_____()
例1:把10人平均分成2組,每組5人,問(wèn)共有多少種不同的分法?
解1:先確定第1組,有種方法,再確定第二組,有種方法。這樣確定兩組共有·種方法。因?yàn)槭堑确纸M,第一、二組次序可交換,同一種分法被重復(fù)了次,所以共有種分法
例2:把10人分成3組,一組2人,一組3人,一組5人,問(wèn)有多少種不同的分法?
解2:按人數(shù)的多少,可把各組劃分為第一組,第二組,第三組。先確定第1組,有種;再確定第二組,有種法;最后確定第三組,有種,共有··種。
例3:把10分成3組,一組2人,其余兩組各4人,問(wèn)有多少種不同的分法?
解3:先確定第1組,有種方法;再確定第二組,有種方法;最后確定第三組,有種方法。因第二、三組次序可交換,故同一分法被重復(fù)了次,所以共有
(1).對(duì)于等分組問(wèn)題:分法數(shù)=
(2).對(duì)于不等分組問(wèn)題:分法數(shù)=按序分組的總數(shù)
(3).對(duì)于混合分組問(wèn)題:分法數(shù)=
十三. 合理分類與分步策略
例13.在一次演唱會(huì)上共10名演員,其中8人能能唱歌,5人會(huì)跳舞,現(xiàn)要演出一個(gè)2人唱歌2人伴舞的節(jié)目,有多少選派方法
解:10演員中有5人只會(huì)唱歌,2人只會(huì)跳舞3人為全能演員。選上唱歌人員為標(biāo)準(zhǔn)進(jìn)行研究
只會(huì)唱的5人中沒(méi)有人選上唱歌人員共有種,只會(huì)唱的5人中只有1人選上唱歌人員種,只會(huì)唱的5人中只有2人選上唱歌人員有種,由分類計(jì)數(shù)原理共有
種。
解含有約束條件的排列組合問(wèn)題,可按元素的性質(zhì)進(jìn)行分類,按事件發(fā)生的連續(xù)過(guò)程分步,做到標(biāo)準(zhǔn)明確。分步層次清楚,不重不漏,分類標(biāo)準(zhǔn)一旦確定要貫穿于解題過(guò)程的始終。
練習(xí)題:
1.從4名男生和3名女生中選出4人參加某個(gè)座 談會(huì),若這4人中必須既有男生又有女生,則不同的選法共有34
2. 3成人2小孩乘船游玩,1號(hào)船最多乘3人, 2號(hào)船最多乘2人,3號(hào)船只能乘1人,他們?nèi)芜x2只船或3只船,但小孩不能單獨(dú)乘一只船, 這3人共有多少乘船方法. (27)
(只有兩種可能--
1:兩小孩都在1號(hào)船,1號(hào)船上還有一大人,這種情況是3*3=9種
2:1小孩在1號(hào)船,1小孩在2號(hào)船,2號(hào)船上還有一大人,這種情況下1號(hào)船必有大人,有2*3*3=18種
最后通過(guò)計(jì)算知共有9+18=27種)
本題還有如下分類標(biāo)準(zhǔn):
*以3個(gè)全能演員是否選上唱歌人員為標(biāo)準(zhǔn)
*以3個(gè)全能演員是否選上跳舞人員為標(biāo)準(zhǔn)
*以只會(huì)跳舞的2人是否選上跳舞人員為標(biāo)準(zhǔn)
都可經(jīng)得到正確結(jié)果
十四.構(gòu)造模型策略
例14. 馬路上有編號(hào)為1,2,3,4,5,6,7,8,9的九只路燈,現(xiàn)要關(guān)掉其中的3盞,但不能關(guān)掉相鄰的2盞或3盞,也不能關(guān)掉兩端的2盞,求滿足條件的關(guān)燈方法有多少種?
解:把此問(wèn)題當(dāng)作一個(gè)排隊(duì)模型在6盞亮燈的5個(gè)空隙中插入3個(gè)不亮的燈有 種
一些不易理解的排列組合題如果能轉(zhuǎn)化為非常熟悉的模型,如占位填空模型,排隊(duì)模型,裝盒模型等,可使問(wèn)題直觀解決
練習(xí)題:某排共有10個(gè)座位,若4人就坐,每人左右兩邊都有空位,那么不同的坐法有多少種?(120)
十五.實(shí)際操作窮舉策略
例15.設(shè)有編號(hào)1,2,3,4,5的五個(gè)球和編號(hào)1,2,3,4,5的五個(gè)盒子,現(xiàn)將5個(gè)球投入這五個(gè)盒子內(nèi),要求每個(gè)盒子放一個(gè)球,并且恰好有兩個(gè)球的編號(hào)與盒子的編號(hào)相同,有多少投法
解:從5個(gè)球中取出2個(gè)與盒子對(duì)號(hào)有種還剩下3球3盒序號(hào)不能對(duì)應(yīng),利用實(shí)際操作法,如果剩下3,4,5號(hào)球, 3,4,5號(hào)盒3號(hào)球裝4號(hào)盒時(shí),則4,5號(hào)球有只有1種裝法,同理3號(hào)球裝5號(hào)盒時(shí),4,5號(hào)球有也只有1種裝法,由分步計(jì)數(shù)原理有種
3號(hào)盒 4號(hào)盒 5號(hào)盒
對(duì)于條件比較復(fù)雜的排列組合問(wèn)題,不易用公式進(jìn)行運(yùn)算,往往利用窮舉法或畫(huà)出樹(shù)狀圖會(huì)收到意想不到的結(jié)果
練習(xí)題:
1.同一寢室4人,每人寫(xiě)一張賀年卡集中起來(lái),然后每人各拿一張別人的賀年卡,則四張賀年卡不同的分配方式有多少種? (9)
(分析:將四張賀卡分別記為A,B,C,D。由題意,某人(不妨設(shè)為A卡的供卡人)取卡有3種情況。因此將卡的不同分配方式分為三類,對(duì)于每一類,其它人依次取卡分步進(jìn)行。為避免重復(fù)或遺漏現(xiàn)象,可用樹(shù)狀圖表示。
↗A→D→C ↗A→D→B ↗A→B→C
B→C→D→A C→D→A→B D→C→A→B
↘D→A→C ↘D→B→A ↘C→B→A
所以共有9種不同的分配方式。
又或:分析:設(shè)4人為甲、乙、丙、丁,則甲送出的卡片可以且只可以由其他三人中的一人收到,故有3種分配方式。以乙收到為例,其他人收到卡片的情況可分為兩類:第一類,甲收到乙送出的卡片,這時(shí)丙、丁只有互送卡片1種分配方式;第二類,甲收到的不是乙送出的卡片,這時(shí),甲收到卡片的方式有2種(分別是丙或丁送出的),對(duì)每一種情況,丙、丁收到卡片的方式只有1種。因此,根據(jù)分步計(jì)數(shù)原理,不同的分配方式有:3×(1+2)=9(種)。
注意:解題的關(guān)鍵在第2個(gè)人和第3個(gè)人的拿法,只要給他們規(guī)定一個(gè)拿卡的順序,依次進(jìn)行,則根據(jù)分步計(jì)數(shù)原理即可求得。)
2.給圖中區(qū)域涂色,要求相鄰區(qū) 域不同色,現(xiàn)有4種可選顏色,則不同的著色方法有 72種
(根據(jù)題意,分2種情況討論:若選3種顏色時(shí),就是15同色,34同色;若4種顏色全用,只能15或34用一種顏色,其它不相同,求解即可.
解答:解:由題意,選用3種顏色時(shí),必須是15同色,34同色,與2進(jìn)行全排列,
涂色方法有C43?A33=24種
4色全用時(shí)涂色方法:是15同色或34同色,有2種情況,
涂色方法有C21?A44=48種
所以不同的著色方法共有48+24=72種;
故答案為72.)
十六. 分解與合成策略
例16. 30030能被多少個(gè)不同的偶數(shù)整除
分析:先把30030分解成質(zhì)因數(shù)的乘積形式30030=2×3×5 × 7 ×11×13
依題意可知偶因數(shù)必先取2,再?gòu)钠溆?個(gè)因數(shù)中任取若干個(gè)組成乘積,
所有的偶因數(shù)為:
練習(xí):正方體的8個(gè)頂點(diǎn)可連成多少對(duì)異面直線
解:我們先從8個(gè)頂點(diǎn)中任取4個(gè)頂點(diǎn)構(gòu)成四體共有體共,每個(gè)四面體有3對(duì)異面直線,正方體中的8個(gè)頂點(diǎn)可連成對(duì)異面直線
分解與合成策略是排列組合問(wèn)題的一種最基本的解題策略,把一個(gè)復(fù)雜問(wèn)題分解成幾個(gè)小問(wèn)題逐一解決,然后依據(jù)問(wèn)題分解后的結(jié)構(gòu),用分類計(jì)數(shù)原理和分步計(jì)數(shù)原理將問(wèn)題合成,從而得到問(wèn)題的答案 ,每個(gè)比較復(fù)雜的問(wèn)題都要用到這種解題策略
十七.化歸策略
例17. 25人排成5×5方陣,現(xiàn)從中選3人,要求3人不在同一行也不在同一列,不同的選法有多少種?
解:將這個(gè)問(wèn)題退化成9人排成3×3方陣,現(xiàn)從中選3人,要求3人不在同一行也不在同一列,有多少選法.這樣每行必有1人從其中的一行中選取1人后,把這人所在的行列都劃掉,如此繼續(xù)下去.從3×3方隊(duì)中選3人的方法有種。再?gòu)?×5方陣選出3×3方陣便可解決問(wèn)題.從5×5方隊(duì)中選取3行3列有選法所以從5×5方陣選不在同一行也不在同一列的3人有選法。
處理復(fù)雜的排列組合問(wèn)題時(shí)可以把一個(gè)問(wèn)題退化成一個(gè)簡(jiǎn)要的問(wèn)題,通過(guò)解決這個(gè)簡(jiǎn)要的問(wèn)題的解決找到解題方法,從而進(jìn)下一步解決原來(lái)的問(wèn)題
練習(xí)題:某城市的街區(qū)由12個(gè)全等的矩形區(qū)組成其中實(shí)線表示馬路,從A走到B的最短路徑有多少種?()(【解析】可將圖中矩形的一邊叫一小段,從A到B最短路線必須走7小段,其中:向東4段,向北3段;而且前一段的尾接后一段的首,所以只要確定向東走過(guò)4段的走法,便能確定路徑,因此不同走法有=35種.)
十八.數(shù)字排序問(wèn)題查字典策略
例18.由0,1,2,3,4,5六個(gè)數(shù)字可以組成多少個(gè)沒(méi)有重復(fù)的比324105大的數(shù)?
解:
數(shù)字排序問(wèn)題可用查字典法,查字典的法應(yīng)從高位向低位查,依次求出其符合要求的個(gè)數(shù),根據(jù)分類計(jì)數(shù)原理求出其總數(shù)。
練習(xí):用0,1,2,3,4,5這六個(gè)數(shù)字組成沒(méi)有重復(fù)的四位偶數(shù),將這些數(shù)字從小到大排列起來(lái),第71個(gè)數(shù)是 3140
(首位為1的偶數(shù)共有4×3×3=36個(gè),首位為2的偶數(shù)共有4×3×2=24個(gè), 首位為3,第二位為0的偶數(shù)共有3×2=6個(gè), 首位為3,第二位為1,第三位為0的偶數(shù)共有2個(gè),首位為3,第二位為1,第三位為2的偶數(shù)共有2個(gè), 首位為3,第二位為1,第三位為4的偶數(shù)共有2個(gè),36+24+6+2+2+2=72 所以第72個(gè)偶數(shù)為3142,第71個(gè)偶數(shù)為3140)
(【1】可設(shè)這12個(gè)矩形的長(zhǎng)為a,寛為b.【2】由圖可知,從點(diǎn)A到點(diǎn)B,總是要經(jīng)過(guò)4個(gè)長(zhǎng)a,三個(gè)寛b。故問(wèn)題可化為把4個(gè)長(zhǎng)a,a,a,a,三個(gè)寛b,b,b,排列成一列,問(wèn)有幾種排法。這相當(dāng)于先把四個(gè)長(zhǎng)a,a,a,a排好,再把三個(gè)寛排好,方法有(5×6×7)÷3!=35種。即從點(diǎn)A,到點(diǎn)B,最短線路有35種方法)
十九.樹(shù)圖策略
例19.人相互傳球,由甲開(kāi)始發(fā)球,并作為第一次傳球,經(jīng)過(guò)次傳求后,球仍回到甲的手中,則不同的傳球方式有______
對(duì)于條件比較復(fù)雜的排列組合問(wèn)題,不易用
公式進(jìn)行運(yùn)算,樹(shù)圖會(huì)收到意想不到的結(jié)果
練習(xí): 分別編有1,2,3,4,5號(hào)碼的人與椅,其中號(hào)人不坐號(hào)椅()的不同坐法有多少種?
二十.復(fù)雜分類問(wèn)題表格策略
例20.有紅、黃、蘭色的球各5只,分別標(biāo)有A、B、C、D、E五個(gè)字母,現(xiàn)從中取5只,要求各字母均有且三色齊備,則共有多少種不同的取法
紅
1
1
1
2
2
3
黃
1
2
3
1
2
1
蘭
3
2
1
2
1
1
取法
解:
一些復(fù)雜的分類選取題,要滿足的條件比較多, 無(wú)從入手,經(jīng)常出現(xiàn)重復(fù)遺漏的情況,用表格法,則分類明確,能保證題中須滿足的條件,能達(dá)到好的效果.
二十一:住店法策略
解決“允許重復(fù)排列問(wèn)題”要注意區(qū)分兩類元素:一類元素可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,再利用乘法原理直接求解.
例21.七名學(xué)生爭(zhēng)奪五項(xiàng)冠軍,每項(xiàng)冠軍只能由一人獲得,獲得冠軍的可能的種數(shù)有 .
分析:因同一學(xué)生可以同時(shí)奪得n項(xiàng)冠軍,故學(xué)生可重復(fù)排列,將七名學(xué)生看作7家“店”,五項(xiàng)冠軍看作5名“客”,每個(gè)“客”有7種住宿法,由乘法原理得7種.
小結(jié)
本節(jié)課,我們對(duì)有關(guān)排列組合的幾種常見(jiàn)的解題策略加以復(fù)習(xí)鞏固。排列組合歷來(lái)是學(xué)習(xí)中的難點(diǎn),通過(guò)我們平時(shí)做的練習(xí)題,不難發(fā)現(xiàn)排列組合題的特點(diǎn)是條件隱晦,不易挖掘,題目多變,解法獨(dú)特,數(shù)字龐大,難以驗(yàn)證。同學(xué)們只有對(duì)基本的解題策略熟練掌握。根據(jù)它們的條件,我們就可以選取不同的技巧來(lái)解決問(wèn)題.對(duì)于一些比較復(fù)雜的問(wèn)題,我們可以將幾種策略結(jié)合起來(lái)應(yīng)用把復(fù)雜的問(wèn)題簡(jiǎn)單化,舉一反三,觸類旁通,進(jìn)而為后續(xù)學(xué)習(xí)打下堅(jiān)實(shí)的基礎(chǔ)。
第三部分 提高題
題型1:計(jì)數(shù)原理
例1.完成下列選擇題與填空題
(1)有三個(gè)不同的信箱,今有四封不同的信欲投其中,則不同的投法有 種。
A.81B.64C.24D.4
(2)四名學(xué)生爭(zhēng)奪三項(xiàng)冠軍,獲得冠軍的可能的種數(shù)是( )
A.81B.64C.24D.4
(3)有四位學(xué)生參加三項(xiàng)不同的競(jìng)賽,
①每位學(xué)生必須參加一項(xiàng)競(jìng)賽,則有不同的參賽方法有 ;
②每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則有不同的參賽方法有 ;
③每位學(xué)生最多參加一項(xiàng)競(jìng)賽,每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則不同的參賽方法有 。
解析:(1)完成一件事是“分步”進(jìn)行還是“分類”進(jìn)行,是選用基本原理的關(guān)鍵。將“投四封信”這件事分四步完成,每投一封信作為一步,每步都有投入三個(gè)不同信箱的三種方法,因此:N=3×3×3×3=34=81,故答案選A。
本題也可以這樣分類完成,①四封信投入一個(gè)信箱中,有C31種投法;②四封信投入兩個(gè)信箱中,有C32(C41·A22+C42·C22)種投法;③四封信投入三個(gè)信箱,有兩封信在同一信箱中,有C42·A33種投法、,故共有C31+C32(C41·A22+C42C22)+C42·A33=81(種)。故選A。
(2)因?qū)W生可同時(shí)奪得n項(xiàng)冠軍,故學(xué)生可重復(fù)排列,將4名學(xué)生看作4個(gè)“店”,3項(xiàng)冠軍看作“客”,每個(gè)“客”都可住進(jìn)4家“店”中的任意一家,即每個(gè)“客”有4種住宿法。由分步計(jì)數(shù)原理得:N=4×4×4=64。
故答案選B。
(3)①學(xué)生可以選擇項(xiàng)目,而競(jìng)賽項(xiàng)目對(duì)學(xué)生無(wú)條件限制,所以類似(1)可得N=34=81(種);
②競(jìng)賽項(xiàng)目可以挑學(xué)生,而學(xué)生無(wú)選擇項(xiàng)目的機(jī)會(huì),每一項(xiàng)可以挑4種不同學(xué)生,共有N=43=64(種);
③等價(jià)于從4個(gè)學(xué)生中挑選3個(gè)學(xué)生去參加三個(gè)項(xiàng)目的競(jìng)賽,每人參加一項(xiàng),故共有C43·A33=24(種)。
例2.今有2個(gè)紅球、3個(gè)黃球、4個(gè)白球,同色球不加以區(qū)分,將這9個(gè)球排成一列有 種不同的方法(用數(shù)字作答)。
解析:本題考查排列組合的基本知識(shí),由題意可知,因同色球不加以區(qū)分,實(shí)際上是一個(gè)組合問(wèn)題,共有。
解:9個(gè)球排成一列有種排法,再除去2紅、3黃、4白的順序即可,
故共有排法種。 答案:1260
解:由題意可知,因同色球不加以區(qū)分,實(shí)際上是一個(gè)組合問(wèn)題.
先在9個(gè)位置中選4個(gè)位置排白球,有C94種排法,再?gòu)氖S嗟?個(gè)位置中選2個(gè)位置排紅球,有C52種排法,
剩余的三個(gè)位置排黃球有C33種排法,
所以共有C94?C52?C33=1260.
答案:1260.
點(diǎn)評(píng):分步計(jì)數(shù)原理與分類計(jì)數(shù)原理是排列組合中解決問(wèn)題的重要手段,也是基礎(chǔ)方法,在高中數(shù)學(xué)中,只有這兩個(gè)原理,尤其是分類計(jì)數(shù)原理與分類討論有很多相通之處,當(dāng)遇到比較復(fù)雜的問(wèn)題時(shí),用分類的方法可以有效的將之化簡(jiǎn),達(dá)到求解的目的。
題型2:排列問(wèn)題
例3.(1)在這五個(gè)數(shù)字組成的沒(méi)有重復(fù)數(shù)字的三位數(shù)中,各位數(shù)字之和為奇數(shù)的共有( )
(A)36個(gè) (B)24個(gè) (C)18個(gè) (D)6個(gè)
(2)從4名男生和3名女生中選出3人,分別從事三項(xiàng)不同的工作,若這3人中至少有1名女生,則選派方案共有( )
(A)108種 (B)186種 (C)216種 (D)270種
(3)在數(shù)字1,2,3與符號(hào)+,-五個(gè)元素的所有全排列中,任意兩個(gè)數(shù)字都不相鄰的全排列個(gè)數(shù)是( )
A.6 B. 12 C. 18 D. 24
(4)高三(一)班學(xué)要安排畢業(yè)晚會(huì)的4各音樂(lè)節(jié)目,2個(gè)舞蹈節(jié)目和1個(gè)曲藝節(jié)目的演出順序,要求兩個(gè)舞蹈節(jié)目不連排,則不同排法的種數(shù)是( )
(A)1800 (B)3600 (C)4320 (D)5040
解析:(1)依題意,所選的三位數(shù)字有兩種情況:(1)3個(gè)數(shù)字都是奇數(shù),有種方法(2)3個(gè)數(shù)字中有一個(gè)是奇數(shù),有,故共有+=24種方法,故選B;
(2)從全部方案中減去只選派男生的方案數(shù),合理的選派方案共有=186種,選B;
(3)先排列1,2,3,有種排法,再將“+”,“-”兩個(gè)符號(hào)插入,有種方法,共有12種方法,選B;
(4)不同排法的種數(shù)為=3600,故選B。
點(diǎn)評(píng):合理的應(yīng)用排列的公式處理實(shí)際問(wèn)題,首先應(yīng)該進(jìn)入排列問(wèn)題的情景,想清楚我處理時(shí)應(yīng)該如何去做。
例4.(1)用數(shù)字0,1,2,3,4組成沒(méi)有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字1,2相鄰的偶數(shù)有 個(gè)(用數(shù)字作答);
(2)電視臺(tái)連續(xù)播放6個(gè)廣告,其中含4個(gè)不同的商業(yè)廣告和2個(gè)不同的公益廣告,要求首尾必須播放公益廣告,則共有 種不同的播放方式(結(jié)果用數(shù)值表示).
解析:(1)可以分情況討論:① 若末位數(shù)字為0,則1,2,為一組,且可以交換位置,3,4,各為1個(gè)數(shù)字,共可以組成個(gè)五位數(shù);② 若末位數(shù)字為2,則1與它相鄰,其余3個(gè)數(shù)字排列,且0不是首位數(shù)字,則有個(gè)五位數(shù);③ 若末位數(shù)字為4,則1,2,為一組,且可以交換位置,3,0,各為1個(gè)數(shù)字,且0不是首位數(shù)字,則有=8個(gè)五位數(shù),所以全部合理的五位數(shù)共有24個(gè)。
(2)分二步:首尾必須播放公益廣告的有A22種;中間4個(gè)為不同的商業(yè)廣告有A44種,從而應(yīng)當(dāng)填 A22·A44=48. 從而應(yīng)填48。
點(diǎn)評(píng):排列問(wèn)題不可能解決所有問(wèn)題,對(duì)于較復(fù)雜的問(wèn)題都是以排列公式為輔助。
題型三:組合問(wèn)題
例5.(1)將5名實(shí)習(xí)教師分配到高一年級(jí)的3個(gè)班實(shí)習(xí),每班至少1名,最多2名,則不同的分配方案有( )
(A)30種 (B)90種 (C)180種 (D)270種
(2)將4個(gè)顏色互不相同的球全部放入編號(hào)為1和2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號(hào),則不同的放球方法有( )
A.10種 B.20種 C.36種 D.52種
解析:(1)將5名實(shí)習(xí)教師分配到高一年級(jí)的3個(gè)班實(shí)習(xí),每班至少1名,最多2名,則將5名教師分成三組,一組1人,另兩組都是2人,有種方法,再將3組分到3個(gè)班,共有種不同的分配方案,選B;
(2)將4個(gè)顏色互不相同的球全部放入編號(hào)為1和2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號(hào),分情況討論:①1號(hào)盒子中放1個(gè)球,其余3個(gè)放入2號(hào)盒子,有種方法;②1號(hào)盒子中放2個(gè)球,其余2個(gè)放入2號(hào)盒子,有種方法;則不同的放球方法有10種,選A。
點(diǎn)評(píng):計(jì)數(shù)原理是解決較為復(fù)雜的排列組合問(wèn)題的基礎(chǔ),應(yīng)用計(jì)數(shù)原理結(jié)合
例6.(1)某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有 種;
(2)5名志愿者分到3所學(xué)校支教,每個(gè)學(xué)校至少去一名志愿者,則不同的分派方法共有( )
(A)150種 (B)180種 (C)200種 (D)280種
解析:(1)可以分情況討論,① 甲去,則乙不去,有=480種選法;②甲不去,乙去,有=480種選法;③甲、乙都不去,有=360種選法;共有1320種不同的選派方案;
(2)人數(shù)分配上有1,2,2與1,1,3兩種方式,若是1,2,2,則有=60種,若是1,1,3,則有=90種,所以共有150種,選A。
點(diǎn)評(píng):排列組合的交叉使用可以處理一些復(fù)雜問(wèn)題,諸如分組問(wèn)題等;
題型4:排列、組合的綜合問(wèn)題
例7.平面上給定10個(gè)點(diǎn),任意三點(diǎn)不共線,由這10個(gè)點(diǎn)確定的直線中,無(wú)三條直線交于同一點(diǎn)(除原10點(diǎn)外),無(wú)兩條直線互相平行。求:(1)這些直線所交成的點(diǎn)的個(gè)數(shù)(除原10點(diǎn)外)。(2)這些直線交成多少個(gè)三角形。
解法一:(1)由題設(shè)這10點(diǎn)所確定的直線是C102=45條。
這45條直線除原10點(diǎn)外無(wú)三條直線交于同一點(diǎn),由任意兩條直線交一個(gè)點(diǎn),共有C452個(gè)交點(diǎn)。而在原來(lái)10點(diǎn)上有9條直線共點(diǎn)于此。所以,在原來(lái)點(diǎn)上有10C92點(diǎn)被重復(fù)計(jì)數(shù);
所以這些直線交成新的點(diǎn)是:C452-10C92=630。
(2)這些直線所交成的三角形個(gè)數(shù)可如下求:因?yàn)槊總€(gè)三角形對(duì)應(yīng)著三個(gè)頂點(diǎn),這三個(gè)點(diǎn)來(lái)自上述630個(gè)點(diǎn)或原來(lái)的10個(gè)點(diǎn)。所以三角形的個(gè)數(shù)相當(dāng)于從這640個(gè)點(diǎn)中任取三個(gè)點(diǎn)的組合,即C6403=43486080(個(gè))。
解法二:(1)如圖對(duì)給定的10點(diǎn)中任取4個(gè)點(diǎn),四點(diǎn)連成6條直線,這6條直線交3個(gè)新的點(diǎn)。故原題對(duì)應(yīng)于在10個(gè)點(diǎn)中任取4點(diǎn)的不同取法的3倍,即這些直線新交成的點(diǎn)的個(gè)數(shù)是:3C104=630。
(2)同解法一。
點(diǎn)評(píng):用排列、組合解決有關(guān)幾何計(jì)算問(wèn)題,除了應(yīng)用排列、組合的各種方法與對(duì)策之外,還要考慮實(shí)際幾何意義。
例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個(gè)不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。
解 設(shè)傾斜角為θ,由θ為銳角,得tanθ=->0,即a、b異號(hào)。
(1)若c=0,a、b各有3種取法,排除2個(gè)重復(fù)(3x-3y=0,2x-2y=0,x-y=0),故有3×3-2=7(條);
(2)若c≠0,a有3種取法,b有3種取法,而同時(shí)c還有4種取法,且其中任兩條直線均不相同,故這樣的直線有3×3×4=36條,從而符合要求的直線共有7+36=43條;
點(diǎn)評(píng):本題是1999年全國(guó)高中數(shù)學(xué)聯(lián)賽中的一填空題,據(jù)抽樣分析正確率只有0.37。錯(cuò)誤原因沒(méi)有對(duì)c=0與c≠0正確分類;沒(méi)有考慮c=0中出現(xiàn)重復(fù)的直線。
題型5:二項(xiàng)式定理
例9.(1)在的展開(kāi)式中,的冪的指數(shù)是整數(shù)的項(xiàng)共有
A.3項(xiàng) B.4項(xiàng) C.5項(xiàng) D.6項(xiàng)
(2)的展開(kāi)式中含x的正整數(shù)指數(shù)冪的項(xiàng)數(shù)是
(A)0 (B)2 (C)4 (D)6
解析:本題主要考查二項(xiàng)式展開(kāi)通項(xiàng)公式的有關(guān)知識(shí);
(1),當(dāng)r=0,3,6,9,12,15,18,21,24時(shí),x的指數(shù)分別是24,20,16,12,8,4,0,-4,-8,其中16,8,4,0,-8均為2的整數(shù)次冪,故選C;
(2)的展開(kāi)式通項(xiàng)為,因此含x的正整數(shù)次冪的項(xiàng)共有2項(xiàng).選B;
點(diǎn)評(píng):多項(xiàng)式乘法的進(jìn)位規(guī)則。在求系數(shù)過(guò)程中,盡量先化簡(jiǎn),降底數(shù)的運(yùn)算級(jí)別,盡量化成加減運(yùn)算,在運(yùn)算過(guò)程可以適當(dāng)注意令值法的運(yùn)用,例如求常數(shù)項(xiàng),可令.在二項(xiàng)式的展開(kāi)式中,要注意項(xiàng)的系數(shù)和二項(xiàng)式系數(shù)的區(qū)別。
例10.(1)在(x-)2006 的二項(xiàng)展開(kāi)式中,含x的奇次冪的項(xiàng)之和為S,當(dāng)x=時(shí),S等于( )
A.23008 B.-23008 C.23009 D.-23009
(2)已知的展開(kāi)式中第三項(xiàng)與第五項(xiàng)的系數(shù)之比為-,其中=-1,則展開(kāi)式中常數(shù)項(xiàng)是( )
(A)-45i (B) 45i (C) -45 (D)45
(3)若多項(xiàng)式
( )
(A)9 (B)10 (C)-9 (D)-10
解析:(1)設(shè)(x-)2006=a0x2006+a1x2005+…+a2005x+a2006;
則當(dāng)x=時(shí),有a0()2006+a1()2005+…+a2005()+a2006=0 (1),
當(dāng)x=-時(shí),有a0()2006-a1()2005+…-a2005()+a2006=23009 (2),
(1)-(2)有a1()2005+…+a2005()=-23009?2=-23008,,故選B;
(2)第三項(xiàng)的系數(shù)為-,第五項(xiàng)的系數(shù)為,由第三項(xiàng)與第五項(xiàng)的系數(shù)之比為-可得n=10,則=,令40-5r=0,解得r=8,故所求的常數(shù)項(xiàng)為=45,選A;
(3)令,得,令,得;
點(diǎn)評(píng):本題考查二項(xiàng)式展開(kāi)式的特殊值法,基礎(chǔ)題;
題型6:二項(xiàng)式定理的應(yīng)用
例11.證明下列不等式:
(1)≥()n,(a、b∈{x|x是正實(shí)數(shù)},n∈N);
(2)已知a、b為正數(shù),且+=1,則對(duì)于n∈N有
(a+b)n-an-bn≥22n-2n+1。
證明:(1)令a=x+δ,b=x-δ,則x=;
an+bn=(x+δ)n+(x-δ)n
=xn+Cn1xn-1δ+…+Cnnδn+xn-Cn1xn-1δ+…(-1)nCnnδn
=2(xn+Cn2xn-2δ2+Cn4xn-4δ4+…)
≥2xn
即≥()n
(2)(a+b)n=an+Cn1an-1b+…+Cnnbn
(a+b)n=bn+Cn1bn-1a+…+Cnnan
上述兩式相加得:
2(a+b)n=(an+bn)+Cn1(an-1b+bn-1a)+…+Cnk(an-kbk+bn-kak)+…+Cnn(an+bn) (*)
∵+=1,且a、b為正數(shù)
∴ab=a+b≥2 ∴ab≥4
又∵ an-kbk+bn-kak≥2=2()n(k=1,2,…,n-1)
∴2(a+b) n≥2an+2bn+Cn12()n+Cn22()n+…+Cnn-12()n
∴(a+b)n-an-bn
≥(Cn1+Cn2+…+Cnn-1)·()n
≥(2n-2)·2n
=22n-2n+1
點(diǎn)評(píng):利用二項(xiàng)式定理的展開(kāi)式,可以證明一些與自然數(shù)有關(guān)的不等式問(wèn)題。題(1)中的換元法稱之為均值換元(對(duì)稱換元)。這樣消去δ奇數(shù)次項(xiàng),從而使每一項(xiàng)均大于或等于零。題(2)中,由由稱位置二項(xiàng)式系數(shù)相等,將展開(kāi)式倒過(guò)來(lái)寫(xiě)再與原來(lái)的展開(kāi)式相加,這樣充分利用對(duì)稱性來(lái)解題的方法是利用二項(xiàng)式展開(kāi)式解題的常用方法。
例12.(1)求4×6n+5n+1被20除后的余數(shù);
(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數(shù)是多少?
(3)根據(jù)下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.001。
解析:(1)首先考慮4·6n+5n+1被4整除的余數(shù)。
∵5n+1=(4+1)n+1=4n+1+Cn+114n+Cn+124n-1+…+Cn+1n·4+1,
∴其被4整除的余數(shù)為1,
∴被20整除的余數(shù)可以為1,5,9,13,17,
然后考慮4·6n+1+5n+1被5整除的余數(shù)。
∵4·6n=4·(5+1)n=4(5n+Cn1·5n-1+Cn2·5n-2+…+Cnn-1·5+1),
∴被5整除的余數(shù)為4,
∴其被20整除的余數(shù)可以為4,9,14,19。
綜上所述,被20整除后的余數(shù)為9。
(2) 7n+Cn1·7n-1+Cn2·7n-2+…+Cnn-1·7
=(7+1)n-1=8n-1=(9-1)n-1
=9n-Cn1·9n-1+Cn2·9n-2+…+(-1)n-1Cnn-1·9+(-1)nCnn-1
(i)當(dāng)n為奇數(shù)時(shí)
原式=9n-Cn1·9n-1+Cn2·9n-2+…+(-1)n-1Cnn-1·9-2
∴除以9所得余數(shù)為7。
(ii)當(dāng)n為偶數(shù)時(shí)
原式=9n-Cn1·9n-1+Cn2·9n-2+…+(-1)n-1Cnn-1·9
∴除以9所得余數(shù)為0,即被9整除。
(3)(1.02)5≈(1+0.02)5
=1+c51·0.02+C52·0.022+C53·0.023+C540.024+C55·0.025
∵C52×0.022=0.004,C53×0.023=8×10-5
∴①當(dāng)精確到0.01時(shí),只要展開(kāi)式的前三項(xiàng)和,1+0.10+0.004=1.104,近似值為1.10。
②當(dāng)精確到0.001時(shí),只要取展開(kāi)式的前四項(xiàng)和,1+0.10+0.004+0.0008=1.10408,近似值為1.104。
點(diǎn)評(píng):(1)用二項(xiàng)式定理來(lái)處理余數(shù)問(wèn)題或整除問(wèn)題時(shí),通常把底數(shù)適當(dāng)?shù)夭鸪蓛身?xiàng)之和或之差再按二項(xiàng)式定理展開(kāi)推得所求結(jié)論;
(2)用二項(xiàng)式定理來(lái)求近似值,可以根據(jù)不同精確度來(lái)確定應(yīng)該取到展開(kāi)式的第幾項(xiàng)。
五.思維總結(jié)
解排列組合應(yīng)用題的基本規(guī)律
1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理使用方法有兩種:①單獨(dú)使用;②聯(lián)合使用。
2.將具體問(wèn)題抽象為排列問(wèn)題或組合問(wèn)題,是解排列組合應(yīng)用題的關(guān)鍵一步。
3.對(duì)于帶限制條件的排列問(wèn)題,通常從以下三種途徑考慮:
(1)元素分析法:先考慮特殊元素要求,再考慮其他元素;
(2)位置分析法:先考慮特殊位置的要求,再考慮其他位置;
(3)整體排除法:先算出不帶限制條件的排列數(shù),再減去不滿足限制條件的排列數(shù)。
4.對(duì)解組合問(wèn)題,應(yīng)注意以下三點(diǎn):
(1)對(duì)“組合數(shù)”恰當(dāng)?shù)姆诸愑?jì)算,是解組合題的常用方法;
(2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”;
(3)設(shè)計(jì)“分組方案”是解組合題的關(guān)鍵所在。
插板法最經(jīng)典的一題是,不同的盒子里放相同的球,如,三個(gè)相同的球放到四個(gè)不同的盒子里,可能都放到一個(gè)盒子里,也可以有一個(gè)空著,三個(gè)盒子里一個(gè)放一個(gè)球。
就不妨把球排成一列,向球中間的空隙插板,但是有的空隙可以選兩次,這樣就必須要有一個(gè)預(yù)留,所以3個(gè)球4個(gè)空隙插3個(gè)板有2個(gè)預(yù)留,所以是C(下標(biāo)4+2 上標(biāo)3)
預(yù)留的意思是,從這么多空隙里選,你先前放入板子的空隙作為重新計(jì)算空隙,無(wú)論你把板子放入到哪個(gè)空隙它都被重新計(jì)數(shù),所以有100+3的情況,就是第一個(gè)板子插入空隙,第二個(gè)可以重復(fù)選擇,所以原來(lái)就是101,第三個(gè)也可以在第三個(gè)板子以后插入,所以是102以此類推。這個(gè)題的難度比較大,不過(guò)我的講解你應(yīng)該能理解了,我要下班了,如果明天有時(shí)間我就給繼續(xù)給你回答。
可以理解x,y,z,w是四種不同顏色的球的數(shù)量,四種球需要三個(gè)插板法隔開(kāi)
如x個(gè)紅球 (1號(hào)插板)y個(gè)綠球(2號(hào)插板)z個(gè)藍(lán)球(3號(hào)插板)w個(gè)紫球
不同的解(x,y,z,w)可一一對(duì)應(yīng)如上的100個(gè)球和3個(gè)插板的方法
3個(gè)插板可以再103個(gè)位置的任何地方,所以方法是C(103,3)
舉個(gè)例子吧,求x+y=5的所有自然數(shù)解的個(gè)數(shù),我用0表示球,1表示木板,
我們現(xiàn)在有00000排列的5個(gè)球,求x+y整數(shù)解的個(gè)數(shù)其實(shí)就是把1個(gè)木板插入到5個(gè)球當(dāng)中,這樣就把球分割成2部分,左側(cè)部分球的個(gè)數(shù)為x,右側(cè)為y,并且有x+y=5,例如001000里x=2,y=3,把一個(gè)木板插入到5個(gè)球中共有6種方法,同理這道題就是把3個(gè)相同木板插入到100個(gè)球中,共有103×102×101/6種方法
追問(wèn):
103×102×101看不懂
,第一個(gè)木板有101種插法,第二個(gè)木板有102種插法,
第三個(gè)木板有103種插法,第四個(gè)木板有104種插法,也沒(méi)想懂,
我覺(jué)得第一個(gè)模板只有99種插法
回答:
你已經(jīng)很接近了,第一個(gè)木板是101種插法,因?yàn)槟景蹇梢苑旁谒星虻淖髠?cè)也可以放在所有球的右側(cè),即100000或000001,這時(shí)候x=0或者y=0,99種只是插入5個(gè)球中間的情況,然后每插入一個(gè)球,是不是可以插入的縫隙就多了一個(gè),以5個(gè)球?yàn)槔?,第一次?個(gè)插入槽位,當(dāng)插入一個(gè)球之后5個(gè)球和1個(gè)木板放在一起可以有7個(gè)插入槽位,后面依次類推,但是你這里面有重復(fù)的,我舉個(gè)例子,設(shè)第一個(gè)木板用1表示,第二個(gè)木板用2表示,那5個(gè)球插入的時(shí)候1200000和2100000是同樣的結(jié)果都是x=0,y=0,z=5,但是你計(jì)算的時(shí)候把這兩種情況算成兩種了,要把這些情況合并,有多少種重復(fù)的,你可以自己想一想,答案是設(shè)木板數(shù)為,每種情況重復(fù)n!次,所以最后要除以n!
這是一份中職數(shù)學(xué)高教版(2021·十四五)拓展模塊一(下冊(cè))第8章 排列組合8.3 二項(xiàng)式定理一等獎(jiǎng)教案設(shè)計(jì),共5頁(yè)。
這是一份高教版(2021·十四五)拓展模塊一(下冊(cè))8.2 排列與組合優(yōu)秀教案設(shè)計(jì),共13頁(yè)。
這是一份高教版(2021)拓展模塊二 下冊(cè)8.3.1 二項(xiàng)式定理精品教學(xué)設(shè)計(jì),共6頁(yè)。教案主要包含了設(shè)計(jì)意圖等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功