
知識提要
1. 定義:能清楚地規(guī)定某一名稱或術語的意義的句子叫做該名稱或術語的定義.
2. 命題:判斷某一件事情的句子叫做命題.
3. 命題組成:命題一般由條件和結論兩部分組成。條件是已知事項,結論是由已知事項得到的事項.這樣的命題可以寫成“如果……那么……”的形式,其中以“如果”開始的部分是條件,“那么”后面的部分是結論。
4.真命題與假命題:正確的命題稱為真命題;不正確的命題稱為假命題.
5.基本事實:數(shù)學中挑選一部分人們經(jīng)過長期實踐后公認為正確的命題,作為判斷其他命題的依據(jù),這些命題稱為基本事實.
6. 定理:用推理的方法判斷為正確的命題叫做定理.
7. 說明假命題方法:要說明一個命題是假命題,通??梢酝ㄟ^舉反例的方法,命題的反例是具備命題的條件,但不具備命題的結論的實例.
練習
一.選擇題
1.下列語句中,屬于定義的是( C )
A.對頂角相等
B.三條邊對應相等的兩個三角形全等
C.在同一平面內(nèi)三條線段首尾順次連接組成的圖形叫做三角形
D. 同旁內(nèi)角互補,兩直線平行
2.下列描述不屬于定義的是( B )
A.無限不循環(huán)小數(shù)叫做無理數(shù)
B.三角形任何兩邊的和大于第三邊
C.在同一平面內(nèi)三條線段首尾順次連結得到的圖形叫做三角形
D.含有未知數(shù)的等式叫做方程
3.下列語句,不是命題的是( C )
A.兩點之間線段最短
B.兩直線不平行就相交
C.a,b兩條直線平行嗎
D.對頂角相等
4.下列命題為假命題的是( C )
A.三角形三個內(nèi)角的和等于180°
B.三角形兩邊之和大于第三邊
C.三角形兩邊之差等于第三邊
D.三角形的面積等于一條邊的長與該邊上的高線的乘積的一半
5.下列所學過的真命題中,是基本事實的是( B )
A.對頂角相等
B.同位角相等,兩直線平行
C.三角形兩邊之和大于第三邊
D.同角的余角相等
6.下列說法正確的是( D )
A. 命題一定是正確的
B. 不正確的判斷就不是命題
C. 真命題都是基本事實
D. 定理都是真命題
7.下例命題中,真命題是( A )
A. 互補的兩角若相等,則這兩個角都是直角
B.直線是平角
C.不相交的兩條直線叫做平行線
D.和為180°的兩個角叫做鄰補角
8. 定義一種運算☆,其規(guī)則為a☆b=,根據(jù)這個規(guī)則,計算2☆3的值是( A )
A. B. C. 5D. 6
9.已知四個命題:①如果一個數(shù)的相反數(shù)等于它本身,則這個數(shù)是0;②一個數(shù)的倒數(shù)等于它本身,則這個數(shù)是1;③一個數(shù)的算術平方根等于它本身,則這個數(shù)是1或者0;④如果一個數(shù)的絕對值等于它本身,則這個數(shù)是正數(shù)。其中真命題有( B )
A.1個 B.2個 C.3個 D.4個
10.某班有20位同學參加圍棋、象棋比賽,甲說:“只參加一項的人數(shù)大于14人.”乙說:“兩項都參加的人數(shù)小于5人.”對于甲、乙兩人的說法,有下列命題,其中是真命題的是( B )
A. 若甲對,則乙對B. 若乙對,則甲對
C. 若乙錯,則甲錯D. 若甲錯,則乙對
【解答】A項,若甲對,即只參加一項的人數(shù)大于14人,則兩項都參加的人數(shù)小于6人,故乙可能對也可能錯. B項,若乙對,即兩項都參加的人數(shù)小于5人,則兩項都參加的人數(shù)至多為4人,此時只參加一項的人數(shù)至少為16人,故甲對. C項,若乙錯,即兩項都參加的人數(shù)大于或等于5人,則只參加一項的人數(shù)小于或等于15人,故甲可能對也可能錯. D項,若甲錯,即只參加一項的人數(shù)至多為14人,則兩項都參加的人數(shù)至少為6人,故乙錯. 綜上所述,真命題只有“若乙對,則甲對”.
二.填空題
1.“若a2>b2,則a>b”的結論部分是 a>b ,此命題是 假 命題(填“真”或“假”)
2.把命題“對頂角相等”寫成“如果,那么”的形式為如果兩個角是對頂角 ,那么 這兩個角相等 。
3.把“等角的余角相等”改寫成“如果,那么”的形式是 如果兩個角相等,那么它們的余角也相等 ,它的條件是 兩個角相等 ,結論是 它們的余角也相等 。
4.下列句子:①直角三角形中的兩個銳角互余;②正數(shù)都小于0;③在同一平面內(nèi)不相交的兩條直線叫做平行線;④太陽不是行星;⑤對頂角相等嗎?⑥作一個角等于已知角. 其中是定義的是___③_________,是命題的是_①②③④___________,既不是定義也不是命題的是___⑤⑥_________.(填寫序號)
5.如圖,若∠1=∠2,則AB∥CD,這是_____假_______命題(填“真”或“假”).
三.解答題
1.寫出下列命題的條件和結論:
(1)兩條直線被第三條直線所截,同旁內(nèi)角互補;
(2)如果三角形中有一個角是直角,那么這個三角形一定是直角三角形。
解答:(1)條件:兩條直線被第三條直線所截,結論是:同旁內(nèi)角互補;
條件:三角形中有一個角是直角,結論是:這個三角形是直角三角形
2.把下列命題改為“如果那么”的形式。
(1)垂直于同一直線的兩條直線互相平行;
(2)末位數(shù)是偶數(shù)的整數(shù)能被2整除。
解答:(1)在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行;
(2)如果一個整數(shù)的末位數(shù)是偶數(shù),那么這個數(shù)能被2整除。
3.如圖,∠ABC的兩邊分別垂直于∠DEF的兩邊,且∠ABC=30°.
(1)圖1中∠E=__30°__________,圖2中∠E=___ 150°_________;
(2)觀察圖1,圖2中∠E分別與∠ABC有怎樣的關系,請你歸納出一個命題.
解答:(1)30° ,150° (2)若兩個角的兩邊互相垂直,那么這兩個角相等或互補.
4.如圖,有如下四個論斷:①AC∥DE,②DC∥EF,③CD平分∠BCA,④EF平分∠BED.
(1)若選擇四個論斷中的三個作為條件,余下的一個論斷作為結論,構成一個數(shù)學命題,其中正確的有哪些?不需說明理由;
(2)請你在上述正確的數(shù)學命題中選擇一個說明理由.
解答(1)如果①②③,那么④;如果①②④,那么③;如果①③④,那么②;如果②③④,那么①.
(2)如果AC∥DE,DC∥EF,CD平分∠BCA,那么EF平分∠BED.理由如下:∵AC∥DE,∴∠BCA=∠BED,即∠1+∠2=∠4+∠5,∵DC∥EF,∴∠2=∠5,∵CD平分∠BCA,∴∠1=∠2,∴∠4=∠5,∴EF平分∠BED.
這是一份初中數(shù)學浙教版八年級上冊1.2 定義與命題精品課時練習,共13頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份初中數(shù)學浙教版八年級上冊1.2 定義與命題優(yōu)秀練習,共12頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
這是一份數(shù)學八年級上冊1.2 定義與命題復習練習題,共7頁。試卷主要包含了定義,命題,真假命題,定理與證明,三角形內(nèi)角和定理等內(nèi)容,歡迎下載使用。
注冊成功