
1.會(huì)通過列一元一次不等式去解決生活中的實(shí)際問題,經(jīng)歷“實(shí)際問題抽象為不等式模型”的過程; (重點(diǎn))2.體會(huì)解不等式過程中的化歸思想與類比思想,體會(huì)分類討論思想在用不等式解決實(shí)際問題中的應(yīng)用.
你還記得應(yīng)用一元一次方程解實(shí)際問題的步驟么?
(課本例3)為拓寬農(nóng)民增收致富渠道,某村依托自身油菜種植業(yè)優(yōu)勢(shì),舉辦油菜花節(jié),其間進(jìn)行民俗表演,表演收取門票,個(gè)人票每張10元,20人以上(含20人)的團(tuán)體票8折優(yōu)惠. 在人數(shù)不足20人的情況下,何時(shí)買20人的團(tuán)體票比買個(gè)人票要便宜?
購(gòu)買個(gè)人票的錢 > 購(gòu)買團(tuán)體票的錢
設(shè)人數(shù)為x,買個(gè)人票需要10x元,買20人的團(tuán)體票需要20×10×80% 元,根據(jù)題意,得
10x > 20×10×80%
因?yàn)槿藬?shù)必須是小于20的整數(shù),即 x < 20. 因此,當(dāng)人數(shù)是17,18,19時(shí),買20人的團(tuán)體票要比買個(gè)人票便宜.
例1 [模擬·六安 ]為提升學(xué)生身體素質(zhì),某校組織了“體育賦能,助力成長(zhǎng)”班級(jí)籃球賽,共 16 個(gè)班級(jí)參加.投籃得分規(guī)則:在三分線外投籃,投中一球可得 3 分,在三分線內(nèi)(含三分線) 投 籃投中一球可得 2 分,某班級(jí) 在其中一場(chǎng)比賽中,共投中 26個(gè)球(只有 2 分球 和 3 分球).所得總分不少于 56 分,該班級(jí)這場(chǎng)比賽中至少投中了多少個(gè) 3 分球?
解題秘方:分析題中的不等關(guān)系列出不等式解決問題 .
特別提醒隱含的不等關(guān)系:3 分球的得分與 2分球的得分的和不小于56 分.
解:設(shè)該班級(jí)這場(chǎng)比賽中投中了 x 個(gè) 3 分球,根據(jù)題意,得 3x+2(26-x)≥ 56,解得 x ≥ 4.答: 該班級(jí)這場(chǎng)比賽中至少投中了 4 個(gè) 3 分球 .
例2 某校組織學(xué)生參加周末郊游活動(dòng) . 甲旅行社說(shuō):“只要一名學(xué)生買全票,那么其余學(xué)生可享受半價(jià)優(yōu)惠 .”乙旅行社說(shuō):“全體學(xué)生都可按 6 折優(yōu)惠 .”已知每張全票價(jià)為 240 元 . (1)設(shè)學(xué)生數(shù)為 x 人,甲旅行社收費(fèi)為 y 甲元,乙旅行社收費(fèi)為 y 乙元,用含 x 的式子表示出 y 甲與 y 乙;(2)討論哪一家旅行社更優(yōu)惠 .
解題秘方:根據(jù)題意直接列式、 化簡(jiǎn)即可;
解:y 甲=240+240×0.5( x-1) =120x+120,y 乙=240×0.6x=144x.
(2)討論哪一家旅行社更優(yōu)惠 .
解題秘方:分三種情況討論: y 甲>y 乙, y 甲=y 乙, y 甲y 乙時(shí),120x+120>144x,解得 x 6x + 1
4x - 6x > 1+8
2x - (4x - 1) < 3
2x – 4x +1 < 3
2x – 4x < 3 - 1
3(4 + x) + 6 ≥ 2×4(x+1)
12 + 3x + 6 ≥ 8x + 8
3x – 8x ≥ 8 – 12 – 6
2(2x - 5) > 36x - 3(x+2)
4x - 10 > 36x - 3x - 6
4x - 36x + 3x > - 6 +10
4. 根據(jù)下列用數(shù)軸表示的不等式的解集,寫出一個(gè)相應(yīng)的含 x 的不等式:
5. 求滿足不等式 3(x-2) < 12 的所有正整數(shù)解.
3(x-2) < 12
3x – 6 < 12
滿足不等式 3(x-2) < 12 的正整數(shù)解有1,2,3,4,5.
6. 李老師開車從家到學(xué)校,如果離家最初的6km,平均速度為30km/h,超過6 km后,平均速度為50 km/h. 那么,李老師每天從家到學(xué)校所需時(shí)間不超過0.5h,求李老師家到學(xué)校的距離最遠(yuǎn)是多少?
答:李老師家到學(xué)校的距離最遠(yuǎn)是21 km.
設(shè)李老師家到學(xué)校的距離為x km,根據(jù)題意可得,
解不等式,得 x ≤ 21
7. 一水果商某次按每千克4元購(gòu)進(jìn)一批蘋果,銷售過程中有20%的蘋果正常損耗. 問該水果商把售價(jià)定為多少時(shí)可以避免虧本?
設(shè)該水果商把售價(jià)定為 x 元時(shí)可以避免虧本. 根據(jù)題意,得
(1-20%) x ≥ 4
答:該水果商把售價(jià)定為 5 元時(shí)可以避免虧本.
8. 學(xué)校舉行環(huán)保知識(shí)競(jìng)賽,共有20個(gè)問題,答對(duì)一題得5分,不答或答錯(cuò)一題扣3分. 如果王林希望自己的得分不低于80分,那么他至少應(yīng)答對(duì)多少題?
答:他至少應(yīng)答對(duì)18道題.
設(shè)他答對(duì)了 x 道題,答錯(cuò)或不答的題有(20 - x)道,根據(jù)題意可得,
5x – 3(20-x) ≥ 80
因?yàn)閱栴}的數(shù)目取整數(shù),所以x的最小值為18.
9. 請(qǐng)舉出一個(gè)生活中的事例,說(shuō)明不等式 2x + 5 > 11的實(shí)際意義.
2位同學(xué)合買一本價(jià)格為11元的書,但錢還是不夠,于是向其他同學(xué)借了5元,這回夠了,設(shè)這2位同學(xué)出的錢相等,則兩人至少各帶了多少錢?
小王和小李自主創(chuàng)業(yè),開了家飲品店. 他們銷售某種飲品,一杯飲品售價(jià)為8元,成本為2元. 現(xiàn)在他們想采用“第二杯半價(jià)”的方式進(jìn)行促銷,期望能通過提高銷售量,擴(kuò)大利潤(rùn).
(1) 按此促銷方式,如果一個(gè)顧客一次買兩杯這種飲品,相當(dāng)于多少折扣的價(jià)格優(yōu)惠?
(8+4) ÷(8×2) = 0.75
答:相當(dāng)于七五折的價(jià)格優(yōu)惠.
(2) 假定一杯這種飲品的利潤(rùn) = 售價(jià)-成本,以前每天平均能售出200杯. 要使現(xiàn)在每天的平均銷售利潤(rùn)比以前有所增長(zhǎng),請(qǐng)建立數(shù)學(xué)模型分析現(xiàn)在每天的平均銷售量應(yīng)滿足什么要求.
設(shè)現(xiàn)在每天的平均銷售量為x杯,根據(jù)題意,得
(8×75% - 2) × x > 200 ×( 8 – 2 )
答:現(xiàn)在每天的平均銷售量應(yīng)大于300杯.
這是一份滬科版(2024)七年級(jí)下冊(cè)(2024)一元一次不等式教案配套課件ppt,共21頁(yè)。PPT課件主要包含了學(xué)習(xí)目標(biāo)及重難點(diǎn),實(shí)際問題,解不等式得,隨堂小練習(xí),習(xí)題1,x≥175,根據(jù)題意得,習(xí)題2,x≤33,習(xí)題3等內(nèi)容,歡迎下載使用。
這是一份數(shù)學(xué)七年級(jí)下冊(cè)(2024)7.2 一元一次不等式圖片ppt課件,共1頁(yè)。
這是一份滬科版(2024)七年級(jí)下冊(cè)(2024)7.2 一元一次不等式教課ppt課件,共20頁(yè)。PPT課件主要包含了解下列不等式,解移項(xiàng)得,合并同類項(xiàng)得,-2x<-2,系數(shù)化為1得,x-3>8+10x,移項(xiàng)得,x-10x>8+3,-7x>11,去分母得等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功