1. 下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A. B.
C.
D.

2. “隨機(jī)擲一枚質(zhì)地均勻的硬幣,正面向上”這一事件是( )
A. 必然事件B. 隨機(jī)事件C. 不可能事件D. 確定事件
3. 為了解某市萬(wàn)名八年級(jí)學(xué)生每天做家庭作業(yè)所用的時(shí)間,從該市八年級(jí)學(xué)生中抽取名學(xué)生進(jìn)行調(diào)查,下列說法正確的是( )
A. 萬(wàn)名八年級(jí)學(xué)生是總體
B. 其中的每名八年級(jí)學(xué)生每天做家庭作業(yè)所用的時(shí)間是個(gè)體
C. 所調(diào)查的名學(xué)生是總體的一個(gè)樣本
D. 樣本容量是名學(xué)生
4. 在□ABCD中,已知∠A﹣∠B=20°,則∠C=( )
A. 60°B. 80°C. 100°D. 120°
5. 矩形具有而平行四邊形不一定具有的性質(zhì)是( )
A. 對(duì)角線互相平分B. 兩組對(duì)角相等C. 對(duì)角線相等D. 兩組對(duì)邊相等
6. 下面各項(xiàng)不能判斷是平行四邊形的是( )
A. B.
C. D.
7. 在平面直角坐標(biāo)系xOy中,平行四邊形的三個(gè)頂點(diǎn)O(0,0),A(3,0),B(3,2),則其第四個(gè)頂點(diǎn)C的坐標(biāo)不可能是( )
A. (0,2)B. (6,2)C. (0,﹣2)D. (4,2)
8. 如圖,過?ABCD的對(duì)角線BD上一點(diǎn)M分別作平行四邊形兩邊的平行線EF與GH,那么圖中的?AEMG的面積S1與?HCFM的面積S2的大小關(guān)系是( )
A. S1>S2B. S1<S2C. S1=S2D. 2S1=S2
二、填空題(本大題共10小題,每小題3分,計(jì)30分)
9. 為了直觀地表示世界七大洲的面積各占全球陸地面積的百分比,最適合使用的統(tǒng)計(jì)圖是________統(tǒng)計(jì)圖.
10. 從-1,0,,3,中隨機(jī)任取一數(shù),取到無理數(shù)的概率是______.
11 用反證法證明命題:“已知,,求證:.”第一步應(yīng)先假設(shè)_____.
12. 已知,點(diǎn)和點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則的值為__________.
13. 有40個(gè)數(shù)據(jù),共分成6組,第1~4組的頻數(shù)分別為10、4、4、6,第5組的頻率是0.1,則6組的頻率是____.
14. 如圖,在平行四邊形中,,,于E,則_______度.

15. 如圖,在□ABCD中,BE平分∠ABC,BC=6,DE=2,則□ABCD周長(zhǎng)等于__________.
16. 某本數(shù)學(xué)書中的二維碼是一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)為cm,寬為1cm,為了測(cè)算二維碼中黑色部分的面積,在長(zhǎng)方形區(qū)域內(nèi)隨機(jī)擲點(diǎn),經(jīng)過大量重復(fù)試驗(yàn),發(fā)現(xiàn)點(diǎn)落入黑色部分的頻率穩(wěn)定在左右,據(jù)此可估計(jì)黑色部分的面積為_____cm2.
17. 為了估計(jì)魚塘中魚條數(shù),養(yǎng)魚者首先從魚塘中打撈30條魚做上標(biāo)記,然后放歸魚塘,經(jīng)過一段時(shí)間,等有標(biāo)記的魚完全混合于魚群中,再打撈200條魚,發(fā)現(xiàn)其中帶標(biāo)記的魚有5條,則魚塘中估計(jì)有________條魚.
18. 如圖,在矩形ABCD中,AB=4,BC=6,過對(duì)角線交點(diǎn)O作EF⊥AC交AD于點(diǎn)E,交BC于點(diǎn)F,則DE的長(zhǎng)是___.
三、解答題(本大題共9小題,計(jì)96分)
19. 如圖,在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為.
(1)畫出關(guān)于原點(diǎn)成中心對(duì)稱的,并寫出點(diǎn)的坐標(biāo);
(2)畫出將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)所得到.
20. 5只不透明的袋子中各裝有10個(gè)球,每個(gè)球除顏色外都相同.
(1)將球攪勻,分別從每只袋子中摸一個(gè)球,摸到白球的概率一樣大嗎?為什么?
(2)將袋子的序號(hào)按摸到白球的概率從小到大的順序排列.
21. “安全教育平臺(tái)”是中國(guó)教育學(xué)會(huì)為方便家長(zhǎng)和學(xué)生參與安全知識(shí)活動(dòng)、接受安全提醒的一種應(yīng)用軟件.某校為了了解家長(zhǎng)和學(xué)生參與“防溺水教育”的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:
A.僅學(xué)生自己參與;B.家長(zhǎng)和學(xué)生一起參與;C.僅家長(zhǎng)自己參與;
D.家長(zhǎng)和學(xué)生都未參與.
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在扇形統(tǒng)計(jì)圖中計(jì)算C類所對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”人數(shù).
22. 在一只不透明的口袋里,裝有若干個(gè)除了顏色外均相同的小球,某數(shù)學(xué)學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
(1)上表中的________,________;
(2)“摸到白球的”的概率的估計(jì)值是_________(精確到0.1);
(3)如果袋中有12個(gè)白球,那么袋中除了白球外,還有多少個(gè)其它顏色的球?
23. 如圖,∠DBC=90°,四邊形ABCD是平行四邊形嗎?為什么?
24. 如圖,平行四邊形ABCD中,E、F分別是對(duì)角線BD上的兩點(diǎn),且BE=DF,連接AE、AF、CE、CF.四邊形AECF是什么樣的四邊形,說明你的道理.
25. 如圖,在四邊形ABCD中,AD∥BC,∠B=∠C.E是邊BC上一點(diǎn),且DE=DC.求證:AD=BE.
26. 如圖,在矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,過點(diǎn)C作CE∥BD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:AC=CE;
(2)若DE=6,CD=8,求△AOB的周長(zhǎng).
27. 如圖,平面直角坐標(biāo)系中,,,,,直線過A點(diǎn),且與y軸交于D點(diǎn).
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)試說明:;
(3)若點(diǎn)M是直線上的一個(gè)動(dòng)點(diǎn),在x軸上是否存在另一個(gè)點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
答案與解析
一、選擇題(本大題共有8小題,每小題3分,共24分)
1. 下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是( )
A. B.
C.
D.

【答案】D
【解析】
【分析】本題考查軸對(duì)稱和中心對(duì)稱圖形定義.根據(jù)題意逐一對(duì)選項(xiàng)進(jìn)行分析即可得到答案.
【詳解】解:∵A選項(xiàng)是軸對(duì)稱圖形不是中心對(duì)稱圖形;
∵B選項(xiàng)不是軸對(duì)稱圖形是中心對(duì)稱圖形;
∵C選項(xiàng)是軸對(duì)稱圖形不是中心對(duì)稱圖形;
∵D選項(xiàng)是軸對(duì)稱圖形是中心對(duì)稱圖形,
故選:D.
2. “隨機(jī)擲一枚質(zhì)地均勻的硬幣,正面向上”這一事件是( )
A. 必然事件B. 隨機(jī)事件C. 不可能事件D. 確定事件
【答案】B
【解析】
【分析】根據(jù)不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件即可得出答案.
【詳解】解:隨機(jī)擲一枚質(zhì)地均勻硬幣,可能正面朝上,也可能反面朝上,
∴“隨機(jī)擲一枚質(zhì)地均勻的硬幣,正面朝上”這一事件是隨機(jī)事件.
故選:B.
【點(diǎn)睛】本題主要考查了必然事件、隨機(jī)事件、不可能事件的概念,必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.
3. 為了解某市萬(wàn)名八年級(jí)學(xué)生每天做家庭作業(yè)所用的時(shí)間,從該市八年級(jí)學(xué)生中抽取名學(xué)生進(jìn)行調(diào)查,下列說法正確的是( )
A. 萬(wàn)名八年級(jí)學(xué)生是總體
B. 其中的每名八年級(jí)學(xué)生每天做家庭作業(yè)所用的時(shí)間是個(gè)體
C. 所調(diào)查的名學(xué)生是總體的一個(gè)樣本
D. 樣本容量是名學(xué)生
【答案】B
【解析】
【分析】總體是指考查的對(duì)象的全體,個(gè)體是總體中的每一個(gè)考查的對(duì)象,樣本是總體中所抽取的一部分個(gè)體,而樣本容量則是指樣本中個(gè)體的數(shù)目.我們?cè)趨^(qū)分總體、個(gè)體、樣本、樣本容量,這四個(gè)概念時(shí),首先找出考查的對(duì)象.從而找出總體、個(gè)體.再根據(jù)被收集數(shù)據(jù)的這一部分對(duì)象找出樣本,最后再根據(jù)樣本確定出樣本容量.
【詳解】解:A、該校八年級(jí)全體學(xué)生每天做家庭作業(yè)所用的時(shí)間是總體,故A不符合題意;
B、其中的每名八年級(jí)學(xué)生每天做家庭作業(yè)所用的時(shí)間是個(gè)體,故B符合題意;
C、從中抽取的1000名學(xué)生每天做家庭作業(yè)所用的時(shí)間是總體的一個(gè)樣本,故C不符合題意;
D、樣本容量是1000,故D不符合題意;
故選:B.
【點(diǎn)睛】此題考查了總體、個(gè)體、樣本、樣本容量,解題要分清具體問題中的總體、個(gè)體與樣本,關(guān)鍵是明確考查的對(duì)象.總體、個(gè)體與樣本的考查對(duì)象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€(gè)體的數(shù)目,不能帶單位.
4. 在□ABCD中,已知∠A﹣∠B=20°,則∠C=( )
A. 60°B. 80°C. 100°D. 120°
【答案】C
【解析】
【詳解】分析:由四邊形ABCD是平行四邊形,可得∠A+∠B=180°,又由∠A-∠B=20°,即可求得∠A的度數(shù),繼而求得答案.
詳解:∵四邊形ABCD是平行四邊形,
∴∠A+∠B=180°,
∵∠A-∠B=20°,
∴∠A=100°,
∴∠C=∠A=100°.
故選C.
點(diǎn)睛:此題考查了平行四邊形的性質(zhì).注意平行四邊形的對(duì)角相等,鄰角互補(bǔ).
5. 矩形具有而平行四邊形不一定具有的性質(zhì)是( )
A. 對(duì)角線互相平分B. 兩組對(duì)角相等C. 對(duì)角線相等D. 兩組對(duì)邊相等
【答案】C
【解析】
【分析】本題考查矩形性質(zhì)和平行四邊形性質(zhì).根據(jù)題意逐一對(duì)選項(xiàng)進(jìn)行分析即可得到答案.
【詳解】解:∵矩形對(duì)角線互相平分,平行四邊形對(duì)角線也互相平分,故A選項(xiàng)不選;
∵矩形兩組對(duì)角相等,平行四邊形兩組對(duì)角也相等,故B選項(xiàng)不選;
∵矩形對(duì)角線相等相等,平行四邊形對(duì)角線不一定相等,故C選項(xiàng)選;
∵矩形兩組對(duì)邊相等,平行四邊形兩組對(duì)邊也相等,故D選項(xiàng)不選,
故選:C.
6. 下面各項(xiàng)不能判斷是平行四邊形的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】本題考查平行四邊形判定.根據(jù)題意逐一對(duì)選項(xiàng)進(jìn)行分析即可得到答案.
【詳解】解:∵,
∴四邊形是平行四邊形,
∵,
∴四邊形是平行四邊形,
∵,不可以判定四邊形是平行四邊形,
∵,
∴,
∴四邊形是平行四邊形,
故選:C.
7. 在平面直角坐標(biāo)系xOy中,平行四邊形的三個(gè)頂點(diǎn)O(0,0),A(3,0),B(3,2),則其第四個(gè)頂點(diǎn)C的坐標(biāo)不可能是( )
A. (0,2)B. (6,2)C. (0,﹣2)D. (4,2)
【答案】D
【解析】
【分析】由題意得出OA=3,由平行四邊形的性質(zhì)得出BC∥OA,BC=OA=3,即可得出結(jié)果.
【詳解】解:∵O(0,0)、A(3,0),B(3,2),
∴OA=3, , 軸,
如圖,

∵四邊形OABC是平行四邊形,
若以O(shè)A,AB為邊,則 ,且,
∵B(3,2),
∴點(diǎn)C1的坐標(biāo)為(0,2);
若以O(shè)A為對(duì)角線,則 ,且,
∴C2(0,﹣2);
若以AB為對(duì)角線,則 ,,
∴ ,
∴C3(6,2)
∴第四個(gè)頂點(diǎn)C的坐標(biāo)(0,2)或(6,2)或(0,﹣2).不可能是(4,2).
故選:D.
【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是熟練掌握平行四邊形的性質(zhì).
8. 如圖,過?ABCD的對(duì)角線BD上一點(diǎn)M分別作平行四邊形兩邊的平行線EF與GH,那么圖中的?AEMG的面積S1與?HCFM的面積S2的大小關(guān)系是( )
A. S1>S2B. S1<S2C. S1=S2D. 2S1=S2
【答案】C
【解析】
【分析】根據(jù)平行四邊形的性質(zhì)和判定得出平行四邊形HBEM、GMFD,證△ABD≌△CDB,得出△ABD和△CDB的面積相等;同理得出△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,相減即可求出答案.
【詳解】∵四邊形ABCD是平行四邊形,EF∥BC,HG∥AB,
∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,
∴四邊形HBEM、GMFD是平行四邊形,
△ABD和△CDB中;
∵,
∴△ABD≌△CDB(SSS),
即△ABD和△CDB的面積相等;
同理△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,
故四邊形AEMG和四邊形HCFM的面積相等,即S1=S2.
故選C.
【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定的應(yīng)用,解此題的關(guān)鍵是求出△ABD和△CDB的面積相等,△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,注意:如果兩三角形全等,那么這兩個(gè)三角形的面積相等
二、填空題(本大題共10小題,每小題3分,計(jì)30分)
9. 為了直觀地表示世界七大洲的面積各占全球陸地面積的百分比,最適合使用的統(tǒng)計(jì)圖是________統(tǒng)計(jì)圖.
【答案】扇形
【解析】
【分析】根據(jù)扇形統(tǒng)計(jì)圖、折線統(tǒng)計(jì)圖、條形統(tǒng)計(jì)圖各自的特點(diǎn)進(jìn)行判斷即可.
【詳解】解:為了直觀地表示世界七大洲的面積各占全球陸地面積的百分比,結(jié)合統(tǒng)計(jì)圖各自的特點(diǎn),應(yīng)選擇扇形統(tǒng)計(jì)圖.
故答案為:扇形.
【點(diǎn)睛】本題主要考查統(tǒng)計(jì)圖的選擇,解題的關(guān)鍵是熟練掌握扇形統(tǒng)計(jì)圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計(jì)圖表示的是事物的變化情況;條形統(tǒng)計(jì)圖能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目.
10. 從-1,0,,3,中隨機(jī)任取一數(shù),取到無理數(shù)的概率是______.
【答案】##
【解析】
【分析】首先找到-1,0,,3,中無理數(shù)為π,,然后利用概率公式求解即可.
【詳解】解:∵從-1,0,,3,中隨機(jī)任取一數(shù),一共有5種等可能結(jié)果,其中滿足無理數(shù)的占兩種π和,
∴取到無理數(shù)的概率為.
故答案為:.
【點(diǎn)睛】本題主要考查概率的計(jì)算公式和無理數(shù)的定義,解決問題的關(guān)鍵是掌握概率的計(jì)算公式.
11. 用反證法證明命題:“已知,,求證:.”第一步應(yīng)先假設(shè)_____.
【答案】
【解析】
【分析】本題考查反證法.根據(jù)反證法得第一步是假設(shè)結(jié)論不成立,反面成立,即的反面是即可解答.
【詳解】解:∵的反面是,
∴“已知,,求證:.”第一步應(yīng)先假設(shè):,
故答案為:.
12. 已知,點(diǎn)和點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則的值為__________.
【答案】
【解析】
【分析】根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)的特點(diǎn),即可得到答案.
【詳解】解:∵點(diǎn)和點(diǎn)關(guān)于原點(diǎn)對(duì)稱,
∴,,
∴;
故答案為:.
【點(diǎn)睛】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)特點(diǎn),解題的關(guān)鍵是熟記平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)是(-x,-y),即關(guān)于原點(diǎn)的對(duì)稱點(diǎn),橫縱坐標(biāo)都變成相反數(shù),比較簡(jiǎn)單.
13. 有40個(gè)數(shù)據(jù),共分成6組,第1~4組頻數(shù)分別為10、4、4、6,第5組的頻率是0.1,則6組的頻率是____.
【答案】0.3.
【解析】
【分析】直接根據(jù)已知求出第1~4組的頻率和,再結(jié)合第5組的頻率,進(jìn)而得出答案.
【詳解】∵第1~4組的頻數(shù)分別為10、4、4、6,
∴第1~4組的頻率和為:0.6.
∵第5組的頻率是0.1,
∴6組的頻率是:1﹣0.6﹣0.1=0.3.
故答案為:0.3.
【點(diǎn)睛】此題主要考查了頻數(shù)與頻率,正確理解頻數(shù)與頻率的定義是解題關(guān)鍵.
14. 如圖,在平行四邊形中,,,于E,則_______度.

【答案】
【解析】
【分析】利用等腰三角形的性質(zhì)可得,由平行四邊形的性質(zhì)可得,再利用直角三角形中兩銳角互余即可求解.
【詳解】解:∵,,
,
,,
,,
,
故答案為:20.
【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),平行四邊形的性質(zhì)及直角三角形兩銳角互余,熟練掌握其性質(zhì)是解題的關(guān)鍵.
15. 如圖,在□ABCD中,BE平分∠ABC,BC=6,DE=2,則□ABCD的周長(zhǎng)等于__________.
【答案】20
【解析】
【分析】根據(jù)四邊形ABCD為平行四邊形可得AE∥BC,根據(jù)平行線的性質(zhì)和角平分線的性質(zhì)可得出∠ABE=∠AEB,繼而可得AB=AE,然后根據(jù)已知可求得結(jié)果.
【詳解】解:∵四邊形ABCD為平行四邊形,
∴AE∥BC,AD=BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,
∴AB=AE,
∴AE+DE=AD=BC=6,
∴AE+2=6,
∴AE=4,
∴AB=CD=4,
∴?ABCD的周長(zhǎng)=4+4+6+6=20,
故答案為20.
16. 某本數(shù)學(xué)書中的二維碼是一個(gè)長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)為cm,寬為1cm,為了測(cè)算二維碼中黑色部分的面積,在長(zhǎng)方形區(qū)域內(nèi)隨機(jī)擲點(diǎn),經(jīng)過大量重復(fù)試驗(yàn),發(fā)現(xiàn)點(diǎn)落入黑色部分的頻率穩(wěn)定在左右,據(jù)此可估計(jì)黑色部分的面積為_____cm2.
【答案】
【解析】
【分析】本題考查用頻率估計(jì)概率,長(zhǎng)方形面積.根據(jù)題意先求出長(zhǎng)方形面積,繼而利用頻率即概率求出黑色面積.
【詳解】解:∵長(zhǎng)方形的長(zhǎng)為cm,寬為1cm,
∴長(zhǎng)方形面積:,
∵落入黑色部分的頻率穩(wěn)定在左右,
∴黑色部分的面積:,
故答案為:.
17. 為了估計(jì)魚塘中魚的條數(shù),養(yǎng)魚者首先從魚塘中打撈30條魚做上標(biāo)記,然后放歸魚塘,經(jīng)過一段時(shí)間,等有標(biāo)記的魚完全混合于魚群中,再打撈200條魚,發(fā)現(xiàn)其中帶標(biāo)記的魚有5條,則魚塘中估計(jì)有________條魚.
【答案】1200
【解析】
【詳解】試題分析:先打撈200條魚,發(fā)現(xiàn)其中帶標(biāo)記的魚有5條,求出有標(biāo)記的魚占的百分比,再根據(jù)共有30條魚做上標(biāo)記,即可得出答案.
解:∵打撈200條魚,發(fā)現(xiàn)其中帶標(biāo)記的魚有5條,
∴有標(biāo)記的魚占×100%=2.5%,
∵共有30條魚做上標(biāo)記,
∴魚塘中估計(jì)有30÷2.5%=1200(條).
故答案為1200.
考點(diǎn):用樣本估計(jì)總體.
18. 如圖,在矩形ABCD中,AB=4,BC=6,過對(duì)角線交點(diǎn)O作EF⊥AC交AD于點(diǎn)E,交BC于點(diǎn)F,則DE的長(zhǎng)是___.
【答案】
【解析】
【分析】連接CE,由矩形的性質(zhì)得出∠ADC=90°,CD=AB=4,AD=BC=6,OA=OC,由線段垂直平分線的性質(zhì)得出AE=CE,設(shè)DE=x,則CE=AE=6-x,在Rt△CDE中,由勾股定理得出方程,解方程即可.
【詳解】解:連接CE,如圖所示:
∵四邊形ABCD是矩形,
∴∠ADC=90°,CD=AB=4,AD=BC=6,OA=OC,
∵EF⊥AC, ∴AE=CE,
設(shè)DE=x,則CE=AE=6-x,
在Rt△CDE中,由勾股定理得:,
解得:, 即;
故答案為:
【點(diǎn)睛】本題考查了矩形的性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.
三、解答題(本大題共9小題,計(jì)96分)
19. 如圖,在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為.
(1)畫出關(guān)于原點(diǎn)成中心對(duì)稱的,并寫出點(diǎn)的坐標(biāo);
(2)畫出將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)所得到的.
【答案】(1)畫圖見解析;
(2)畫圖見解析
【解析】
【分析】本題考查關(guān)于原點(diǎn)對(duì)稱點(diǎn)坐標(biāo)的特點(diǎn),畫出中心對(duì)稱圖形,旋轉(zhuǎn)后坐標(biāo),畫旋轉(zhuǎn)圖形.
(1)先求出的坐標(biāo),順次連接即可得到;
(2)先根據(jù)旋轉(zhuǎn)定義求出坐標(biāo),順次連接即可得到.
【小問1詳解】
解:∵,
∴,畫圖如下:
【小問2詳解】
解:∵將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),
∴,畫圖如下:
20. 5只不透明的袋子中各裝有10個(gè)球,每個(gè)球除顏色外都相同.
(1)將球攪勻,分別從每只袋子中摸一個(gè)球,摸到白球的概率一樣大嗎?為什么?
(2)將袋子的序號(hào)按摸到白球的概率從小到大的順序排列.
【答案】(1)不一樣大,理由見解析
(2)排列順序?yàn)椋海?),(2),(1),(3),(4)
【解析】
【分析】(1)根據(jù)概率公式求解即可得出答案;
(2)根據(jù)(1)求出的概率,然后按從小到大的順序排列起來即可.
【小問1詳解】
解: 圖1袋子中裝有10個(gè)球,其中白球有5個(gè),
摸到白球的概率是;
圖2袋子中裝有10個(gè)球,其中白球有2個(gè),
摸到白球的概率是;
圖3袋子中裝有10個(gè)球,其中白球有9個(gè),
摸到白球的概率是;
圖4袋子中裝有10個(gè)球,其中白球有10個(gè),
摸到白球的概率是1;
圖5袋子中裝有10個(gè)球,其中白球有0個(gè),
摸到白球的概率是0;
摸到白球的概率不一樣大.
【小問2詳解】
解:根據(jù)(1)可得:
(5)(2)(1)(3)(4).
【點(diǎn)睛】本題考查了概率的知識(shí).用到的知識(shí)點(diǎn)為:概率所求情況數(shù)與總情況數(shù)之比.
21. “安全教育平臺(tái)”是中國(guó)教育學(xué)會(huì)為方便家長(zhǎng)和學(xué)生參與安全知識(shí)活動(dòng)、接受安全提醒的一種應(yīng)用軟件.某校為了了解家長(zhǎng)和學(xué)生參與“防溺水教育”的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:
A.僅學(xué)生自己參與;B.家長(zhǎng)和學(xué)生一起參與;C.僅家長(zhǎng)自己參與;
D.家長(zhǎng)和學(xué)生都未參與.
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在扇形統(tǒng)計(jì)圖中計(jì)算C類所對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù).
【答案】(1)
(2)條形統(tǒng)計(jì)圖見解析,
(3)
【解析】
【分析】本題考查了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖信息關(guān)聯(lián)問題,旨在考查學(xué)生的數(shù)據(jù)處理能力.
(1)根據(jù)類情況條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的數(shù)據(jù)即可求解;
(2)計(jì)算出類情況的人數(shù),根據(jù)C類所占比例即可求解;
(3)計(jì)算出樣本中“家長(zhǎng)和學(xué)生都未參與”所占比例即可求解.
【小問1詳解】
解:(名)
故答案為:
【小問2詳解】
解:類情況共有:(人)
補(bǔ)全條形統(tǒng)計(jì)圖如下:
C類所對(duì)應(yīng)扇形的圓心角的度數(shù)為:
【小問3詳解】
解:(人)
即:估計(jì)該校名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù)為人
22. 在一只不透明的口袋里,裝有若干個(gè)除了顏色外均相同的小球,某數(shù)學(xué)學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù).下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):
(1)上表中的________,________;
(2)“摸到白球的”的概率的估計(jì)值是_________(精確到0.1);
(3)如果袋中有12個(gè)白球,那么袋中除了白球外,還有多少個(gè)其它顏色的球?
【答案】(1),.(2)0.6. (3)8個(gè).
【解析】
【分析】(1)根據(jù)表中的數(shù)據(jù),計(jì)算得出摸到白球的頻率.
(2)由表中數(shù)據(jù)即可得;
(3)根據(jù)摸到白球的頻率即可求出摸到白球概率.根據(jù)口袋中白球的數(shù)量和概率即可求出口袋中球的總數(shù),用總數(shù)減去白顏色的球數(shù)量即可解答.
【詳解】(1)=0.59,.
(2)由表可知,當(dāng)n很大時(shí),摸到白球的頻率將會(huì)接近0.6;.
(3)(個(gè)).答:除白球外,還有大約8個(gè)其它顏色的小球.
【點(diǎn)睛】本題考查如何利用頻率估計(jì)概率,解題關(guān)鍵是要注意頻率和概率之間的關(guān)系.
23. 如圖,∠DBC=90°,四邊形ABCD是平行四邊形嗎?為什么?
【答案】是平行四邊形,理由見解析
【解析】
【分析】根據(jù)勾股定理的逆定理得出x的值,進(jìn)而利用平行四邊形判定解答即可.
【詳解】解:是平行四邊形,理由如下:
∵∠DBC=90°,
可得:(x﹣3)2=42+(x﹣5)2,
解得:x=8,
所以AD=BC=3,AB=CD=5,
所以四邊形ABCD是平行四邊形.
考點(diǎn):平行四邊形的判定;勾股定理.
24. 如圖,平行四邊形ABCD中,E、F分別是對(duì)角線BD上的兩點(diǎn),且BE=DF,連接AE、AF、CE、CF.四邊形AECF是什么樣的四邊形,說明你的道理.
【答案】四邊形AECF是平行四邊形,證明見解析.
【解析】
【分析】由四邊形ABCD是平行四邊形,得到AB=CD,∠ABE=∠CDF,再證明,可得 同理可證: 從而可得結(jié)論.
【詳解】解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠ABE=∠CDF,
∵BE=DF,
∴,
∴AE=CF,
同理:CE=AF,
∴四邊形AECF是平行四邊形.
【點(diǎn)睛】本題考查的是平行四邊形的判定,三角形全等的判定與性質(zhì),掌握以上知識(shí)是解題的關(guān)鍵.
25. 如圖,在四邊形ABCD中,AD∥BC,∠B=∠C.E是邊BC上一點(diǎn),且DE=DC.求證:AD=BE.
【答案】詳見解析.
【解析】
【分析】利用已知先證明AB∥DE,進(jìn)而根據(jù)平行四邊形的定義:兩組對(duì)邊平行的四邊形是平行四邊形,即可得出結(jié)論.
【詳解】證明:∵DE=DC,
∴∠DEC=∠C.
∵∠B=∠C,
∴∠B=∠DEC,
∴AB∥DE,
∵AD∥BC,
∴四邊形ABED是平行四邊形.
∴AD=BE.
【點(diǎn)睛】本題主要考查了平行四邊形判定和性質(zhì).解題的關(guān)鍵是熟練掌握平行四邊形的判定定理和性質(zhì)定理的運(yùn)用.
26. 如圖,在矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,過點(diǎn)C作CE∥BD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:AC=CE;
(2)若DE=6,CD=8,求△AOB的周長(zhǎng).
【答案】(1)見解析 (2)18
【解析】
【分析】(1)根據(jù)矩形的性質(zhì)求出AC=BD,CD∥AB,根據(jù)平行四邊形的判定推出四邊形DECB是平行四邊形,根據(jù)平行四邊形的性質(zhì)得出BD=CE即可;
(2)根據(jù)平行四邊形的性質(zhì)可得BC=DE=6,然后根據(jù)勾股定理即可解決問題.
【小問1詳解】
證明:∵四邊形ABCD是矩形,
∴AC=BD,BC∥AD,
即BC∥DE,
∵CE∥BD,
∴四邊形DECB是平行四邊形,
∴BD=CE,
∴AC=CE;
【小問2詳解】
解:∵四邊形DECB是平行四邊形,
∴BC=DE=6,
∵AB=CD=8,
∴,
∵四邊形ABCD是矩形,
∴OA+OB=BD=10,
∴△AOB的周長(zhǎng)=OA+OB+AB=10+8=18.
【點(diǎn)睛】本題考查了矩形的性質(zhì),平行四邊形的判定和性質(zhì),等腰三角形的判定的應(yīng)用,解此題的關(guān)鍵是求出AC=BD和得出四邊形DECB是平行四邊形.
27. 如圖,平面直角坐標(biāo)系中,,,,,直線過A點(diǎn),且與y軸交于D點(diǎn).
(1)求點(diǎn)A、點(diǎn)B的坐標(biāo);
(2)試說明:;
(3)若點(diǎn)M是直線上的一個(gè)動(dòng)點(diǎn),在x軸上是否存在另一個(gè)點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1),
(2)見解析 (3)存在,或或
【解析】
【分析】(1)根據(jù)題意利用矩形性質(zhì)及判定可得點(diǎn)坐標(biāo),令即可得到的值,即為點(diǎn)坐標(biāo);
(2)根據(jù)直線解析式求出點(diǎn)坐標(biāo),得到的值,根據(jù)矩形對(duì)邊相等,,然后證明,再利用全等性質(zhì)即可得到結(jié)論;
(3)根據(jù)平行四邊形對(duì)邊平行且相等可得,,令求出點(diǎn)坐標(biāo),從而得到長(zhǎng)度,再分情況討論求出點(diǎn)坐標(biāo).
【小問1詳解】
解:當(dāng)時(shí),,解得:,
∴點(diǎn)坐標(biāo)為,
∵,,,
∴過點(diǎn)作于,則四邊形是矩形,
∴,,
∴點(diǎn)的坐標(biāo)為;
【小問2詳解】
解:當(dāng)時(shí),,
∴點(diǎn)坐標(biāo)為,
∴,
根據(jù)(1)中結(jié)論,四邊形是矩形,
∴,,
在和中,
,
∴,
∴,
∵,
∴,
∴,
∴;
【小問3詳解】
解:存在
∵點(diǎn)在軸上,O、B、M、N為頂點(diǎn)的四邊形是平行四邊形,
∴軸且,
根據(jù)(1),點(diǎn),
∴,解得:,
∴點(diǎn),
∴,
①點(diǎn)在點(diǎn)左邊時(shí),,
∴點(diǎn)的坐標(biāo)為,
②點(diǎn)在點(diǎn)的右邊時(shí),,
∴點(diǎn)的坐標(biāo)為,
③作關(guān)于的對(duì)稱點(diǎn),則也符合,點(diǎn)的坐標(biāo)為,
綜上所述:或或.
【點(diǎn)睛】本題考查坐標(biāo)與圖形,一次函數(shù)與坐標(biāo)軸交點(diǎn),矩形性質(zhì)及判定,平行四邊形性質(zhì),全等三角形判定及性質(zhì).
摸球的次數(shù)
100
150
200
500
800
1000
摸到白球的次數(shù)
59
96
295
480
601
摸到白球的頻率
0.64
0.58
0.59
0.60
0.601
摸球的次數(shù)
100
150
200
500
800
1000
摸到白球的次數(shù)
59
96
295
480
601
摸到白球的頻率
0.64
0.58
0.59
0.60
0.601

相關(guān)試卷

2023-2024學(xué)年江蘇省鹽城市濱??h濱淮教育集團(tuán)七年級(jí)(下)月考數(shù)學(xué)試卷(3月份)(含解析):

這是一份2023-2024學(xué)年江蘇省鹽城市濱海縣濱淮教育集團(tuán)七年級(jí)(下)月考數(shù)學(xué)試卷(3月份)(含解析),共17頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2023-2024學(xué)年江蘇省鹽城市濱??h濱淮教育集團(tuán)七年級(jí)(下)月考數(shù)學(xué)試卷(3月份)(含解析):

這是一份2023-2024學(xué)年江蘇省鹽城市濱??h濱淮教育集團(tuán)七年級(jí)(下)月考數(shù)學(xué)試卷(3月份)(含解析),共17頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

2023-2024學(xué)年江蘇省鹽城市濱??h濱淮教育集團(tuán)八年級(jí)(下)月考數(shù)學(xué)試卷(3月份)(含解析):

這是一份2023-2024學(xué)年江蘇省鹽城市濱海縣濱淮教育集團(tuán)八年級(jí)(下)月考數(shù)學(xué)試卷(3月份)(含解析),共19頁(yè)。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。

英語(yǔ)朗讀寶

相關(guān)試卷 更多

江蘇省鹽城市濱??h濱淮教育集團(tuán)2023-2024學(xué)年八年級(jí)下學(xué)期3月月考數(shù)學(xué)試題(含答案)

江蘇省鹽城市濱??h濱淮教育集團(tuán)2023-2024學(xué)年八年級(jí)下學(xué)期3月月考數(shù)學(xué)試題(含答案)

江蘇省鹽城市濱??h濱淮教育集團(tuán)2023-2024學(xué)年七年級(jí)下學(xué)期3月月考數(shù)學(xué)試題

江蘇省鹽城市濱海縣濱淮教育集團(tuán)2023-2024學(xué)年七年級(jí)下學(xué)期3月月考數(shù)學(xué)試題

鹽城市濱??h濱淮教育集團(tuán)2021-2022學(xué)年八年級(jí)3月月考數(shù)學(xué)試題(含解析)

鹽城市濱??h濱淮教育集團(tuán)2021-2022學(xué)年八年級(jí)3月月考數(shù)學(xué)試題(含解析)

2021-2022學(xué)年江蘇省濱淮十校聯(lián)考最后數(shù)學(xué)試題含解析

2021-2022學(xué)年江蘇省濱淮十校聯(lián)考最后數(shù)學(xué)試題含解析

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
月考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬(wàn)優(yōu)選資源,讓備課更輕松
  • 600萬(wàn)優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬(wàn)教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部