
1.選擇題用2B鉛筆,解答題的答案用0.5毫米的黑色簽字筆書寫在答題卡上,不得在試卷上直接作答;
2.答題前,請認(rèn)真閱讀答題卡上的注意事項(xiàng),并按要求填寫內(nèi)容和答題;
3.考試結(jié)束,由監(jiān)考人員將試題和答題卡一并收回.
第Ⅰ卷
一、選擇題(本大題12個小題,每小題3分,共36分.在每個小題的下面,都給出了代號為A、B、C、D的四個答案,其中只有一個是正確的,請將答題卡上對應(yīng)題目的答案標(biāo)號涂黑.)
1. 下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A. B. C. D.
答案:C
2. 一元二次方程的一次項(xiàng)系數(shù)是( )
A. B. C. 2D. 3
答案:B
3. 已知的半徑為,點(diǎn)到圓心的距離為,則點(diǎn)和圓的位置關(guān)系( )
A. 點(diǎn)在圓內(nèi)B. 點(diǎn)在圓外C. 點(diǎn)在圓上D. 無法判斷
答案:B
4. 在平面直角坐標(biāo)系中,點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)是( )
A. B. C. D.
答案:B
5. 為慶祝2023年5月30日神舟十六號成功發(fā)射,學(xué)校開展航天知識競賽活動經(jīng)過幾輪篩選,某班決定從甲、乙、丙、丁四名同學(xué)中選擇一名同學(xué)代表班級參加比賽,經(jīng)統(tǒng)計(jì),四名同學(xué)成績的平均數(shù)(單位:分)及方差(單位:)如右表,根據(jù)表中數(shù)據(jù),要選一名成績好且狀態(tài)穩(wěn)定的同學(xué)參賽,應(yīng)選擇( )
A. 甲B. 乙C. 丙D. 丁
答案:A
6. 一元二次方程x2﹣4x+4=0的根的情況是( )
A. 有兩個不相等的實(shí)數(shù)根B. 有兩個相等的實(shí)數(shù)根
C. 有一個實(shí)數(shù)根D. 沒有實(shí)數(shù)根
答案:B
7. 如圖,將繞點(diǎn)A順時針旋轉(zhuǎn)得到,若線段,則( )
A. 2B. 3C. 4D. 5
答案:C
8. 如圖,平行四邊形ABCD的對角線AC,BD相交于點(diǎn)O,下列結(jié)論錯誤的是( )
A. OA=OCB. AB=CD
C. AD=BCD. ∠ABD=∠CBD
答案:D
9. 如圖,一個底部呈球形的燒瓶,球的半徑為,瓶內(nèi)液體的最大深度,則截面圓中弦的長為( )cm.
A. B. 6C. 8D. 8.4
答案:C
10. 電影《流浪地球》講述了太陽即將毀滅,毀滅之后的太陽系已經(jīng)不適合人類生存,而面對絕境,人類將開啟“流浪地球”計(jì)劃,試圖帶著地球一起逃離太陽系,尋找人類新家園的故事.一經(jīng)上映就獲得追捧,第一天票房收入約8億元,第三天票房收入達(dá)到了億元,設(shè)第一天到第三天票房收入平均每天增長的百分率為x,則可列方程( )
A. B.
C. D.
答案:C
11. 周末小麗從家里出發(fā)騎單車去公園,因?yàn)樗遗c公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續(xù)騎行,愉快地到了公園.圖中描述了小麗路上的情景,下列說法中錯誤的是( )
A. 小麗從家到達(dá)公園共用時間20分鐘B. 公園離小麗家的距離為2000米
C. 小麗在便利店時間為15分鐘D. 便利店離小麗家的距離為1000米
答案:C
12. 如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=﹣(x﹣2)2﹣1交于點(diǎn)B(1,﹣2),且分別與y軸交于點(diǎn)D、E.過點(diǎn)B作x軸的平行線,交拋物線于點(diǎn)A、C,則以下結(jié)論:
①無論x取何值,y2總是負(fù)數(shù);
②l2可由l1向右平移3個單位,再向下平移3個單位得到;
③當(dāng)﹣3<x<1時,隨著x的增大,y1﹣y2的值先增大后減?。?br>④四邊形AECD為正方形.
其中正確的是( )
A. 1個B. 2個C. 3個D. 4個
答案:C
第Ⅱ卷
二、填空題(本大題共6小題,每小題2分,共12分.)
13. 若式子有意義,則的取值范圍是________.
答案:
14. 如圖,在⊙O中,AB=DC,∠AOB=50°,則∠COD=_____.
答案:50°
15. 拋物線頂點(diǎn)坐標(biāo)是______.
答案:
16. 如圖,已知的直徑與弦的夾角為,過C點(diǎn)的切線與的延長線交于點(diǎn)P,且,則的半徑為______.
答案:
17. 已知函數(shù),當(dāng)時,則y的取值范圍為______.
答案:##
18. 如圖,在正方形中,點(diǎn)E、F、G分別在上,,,與于點(diǎn)P,連接,則的最小值為______.
答案:##
三、解答題(本大題共8小題,共72分.解答應(yīng)寫出必要的演算步驟.)
19. 計(jì)算:
答案:4
解:
.
20. 解一元二次方程x2﹣8x+1=0;
答案:x1=4+,x2=4﹣;
x2﹣8x+1=0;
x2﹣8x=﹣1,
x2﹣8x+16=15,
x﹣4=±,
所以x1=4+,x2=4﹣.
21. 如圖,三個頂點(diǎn)的坐標(biāo)分別為.
(1)與關(guān)于原點(diǎn)O對稱,畫出;
(2)將繞點(diǎn)A逆時針旋轉(zhuǎn),在網(wǎng)格中畫出旋轉(zhuǎn)后對應(yīng)的,并直接寫出的坐標(biāo);
(3)求經(jīng)過點(diǎn)A與的一次函數(shù)解析式.
答案:(1)圖見解析
(2)圖見解析,點(diǎn)的坐標(biāo)為;
(3)
【小問1詳解】
如圖,即為所求,
【小問2詳解】
如圖,即為所求,點(diǎn)的坐標(biāo)為;
【小問3詳解】
設(shè)過點(diǎn)A與的一次函數(shù)解析式為,把點(diǎn)與代入得,
,
解得,
∴過點(diǎn)A與的一次函數(shù)解析式為.
22. 某校為了了解初一年級共480名學(xué)生身體素質(zhì)情況,對他們進(jìn)行了身體素質(zhì)測試,現(xiàn)隨機(jī)抽取甲、乙兩班各15名同學(xué)的測試成績(單位:分)進(jìn)行整理分析,過程如下:
【收集數(shù)據(jù)】
甲班15名學(xué)生測試成績分別為:78,83,89,97,98,85,100,94,87,90,93,92,99,95,100
乙班15名學(xué)生測試成績中的成績?yōu)椋?1,92,94,90,93
【整理數(shù)據(jù)】
【分析數(shù)據(jù)】
【應(yīng)用數(shù)據(jù)】
(1)根據(jù)以上信息,可以求出: , ;
(2)若規(guī)定測試成績在90分(含90分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請估計(jì)初一年級480名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生共有多少名;
(3)根據(jù)以上數(shù)據(jù),你認(rèn)為哪個班學(xué)生的身體素質(zhì)整體成績較好?請說明理由(一條理由即可).
答案:(1)100,91;
(2)估計(jì)參加防疫知識測試的480名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生共有256人;
(3)甲班成績較好,理由見解析
【小問1詳解】
解:∵甲班15名學(xué)生測試成績100出現(xiàn)次數(shù)最多,
∴眾數(shù)是100分,則;
把乙組15個數(shù)按從小到大排列,則中位數(shù)是第8個數(shù),
即中位數(shù)出現(xiàn)在這一組中,故;
故答案為:100,91;
【小問2詳解】
解:根據(jù)題意得:(人),
答:估計(jì)參加防疫知識測試的480名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生共有256人;
【小問3詳解】
解:甲班成績較好,理由如下:
因?yàn)榧装喑煽兊钠骄鶖?shù)大于乙班,方差小于乙班,所以甲班整體平均成績大于乙班且甲班成績穩(wěn)定.
23. 如圖,已知中,,是外接圓直徑,過點(diǎn)C作的垂線交的延長線于點(diǎn)E,連接.求證:
(1)平分;
(2)是的切線.
答案:(1)見解析 (2)見解析
【小問1詳解】
證明:∵,
∴,
∵,
∴,
∵圓的內(nèi)接四邊形,
∴,
∵,
∴,
∴,
∴,
∴平分.
【小問2詳解】
解:如圖:連接,
∵,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵是的半徑,
∴是的切線.
24. 小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價(jià)為6元,當(dāng)銷售單價(jià)定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價(jià)每提高1元,日銷售將會減少10件,物價(jià)部門規(guī)定:銷售單價(jià)不能超過12元,設(shè)該紀(jì)念品的銷售單價(jià)為(元),日銷量為(件),日銷售利潤為(元).
(1)求與的函數(shù)關(guān)系式;
(2)求日銷售利潤(元)與銷售單價(jià)(元)的函數(shù)關(guān)系式,當(dāng)為何值時,日銷售利潤最大,并求出最大利潤.
答案:(1);(2);當(dāng)為12時,日銷售利潤最大,最大利潤960元.
解:(1)根據(jù)題意得,,
故與的函數(shù)關(guān)系式為;
(2)根據(jù)題意得,,
,
當(dāng)時,隨的增大而增大,
當(dāng)時,W最大,
答:當(dāng)為12時,日銷售利潤最大,最大利潤960元.
25. 已知拋物線y=ax2 +bx+ l經(jīng)過點(diǎn)(1,-2), (-2,13).
(1)求a,b的值;
(2)若(5,y1),(n,y2)是拋物線上不同的兩點(diǎn),且y2=12-y1,求n的值;
(3)將此拋物線沿x軸平移m(m>0)個單位長度,當(dāng)自變量x的值滿足-1≤x≤3時,與其對應(yīng)的函數(shù)值y的最小值為6,求m的值.
答案:(1)a=1,b=-4
(2)n的值為-1 (3)m的值為4或6
【小問1詳解】
解:把點(diǎn)(1,-2),(-2,13)代入y=ax2+bx+1得,,
解得:;
【小問2詳解】
解:由(1)得函數(shù)解析式為y=x2-4x+1,
把x=5代入y=x2-4x+1得,y1=6,
∴y2=12- y1=6= y1,
∵(5,y1),(n,y2)是拋物線上不同的兩點(diǎn),
∴(5,y1)與(n,y2)關(guān)于對稱軸對稱,
∵對稱軸為直線x=2,
∴n=4-5=-1.
【小問3詳解】
解:由(1)得函數(shù)解析式為,
∵此拋物線沿x軸平移m(m>0)個單位長度,
∴①當(dāng)向右平移時,平移后的解析式為,
∴對稱軸為,
當(dāng)時,頂點(diǎn)處取最小值,此時最小值為-3,不合題意;
當(dāng)即時,對稱軸-1≤x≤3的右邊,
此時當(dāng)-1≤x≤3時y隨x的增大而減小,
∴當(dāng)時,有最小值6,即,
解得,(舍去);
②當(dāng)向左平移時,平移后的解析式為,
∴對稱軸為,
當(dāng)時,頂點(diǎn)處取最小值,此時最小值為-3,不合題意;
當(dāng),時,當(dāng)-1≤x≤3時y隨x的增大而增大,
∴當(dāng)時,有最小值6,即,
解得,(舍去),
綜上所述,m的值為4或6.
26. 數(shù)學(xué)活動課上,同學(xué)們以“等腰三角形的旋轉(zhuǎn)”為主題,開展如下探究活動:
(1)【操作探究】如圖1,為等邊三角形,將繞點(diǎn)A旋轉(zhuǎn),得到,連接,F(xiàn)是的中點(diǎn),則______;連接,則與的數(shù)量關(guān)系是______.
(2)【遷移探究】如圖2,將(1)中的繞點(diǎn)A逆時針旋轉(zhuǎn),得到,其他條件不變,求出此時的度數(shù)及與的數(shù)量關(guān)系.
(3)【拓展應(yīng)用】如圖3,在中,,將繞點(diǎn)A旋轉(zhuǎn),得到,連接,F(xiàn)是的中點(diǎn),連接.在旋轉(zhuǎn)過程中,當(dāng)時,直接寫出線段的長.
答案:(1)90度,
(2)
(3)1或.
【小問1詳解】
解:∵將等邊繞點(diǎn)A旋轉(zhuǎn),得到,
∴B、A、D共線,E、A、C共線,,,
∴,
∴,
∴,
∵,F(xiàn)是的中點(diǎn),
∴是的中位線,
∴,
故答案為:90度,;
小問2詳解】
解:∵等邊三角形繞點(diǎn)A逆時針旋轉(zhuǎn),得到,
∴,
∴,
∴是等腰直角三角形,
∴,
∴;
∵F是的中點(diǎn),
∴,
∴是等腰直角三角形,
∴,
∵,
∴;
答:∠EBC的度數(shù)為,與的數(shù)量關(guān)系為;
【小問3詳解】
解:如圖:當(dāng)E在上方時,
∵,
∴,
∵,
∴,
∵將繞點(diǎn)A旋轉(zhuǎn),得到,
∴,
∵F是中點(diǎn),
∴,
在中,;
當(dāng)E在下方時,如圖:
同理可得,
∴;
綜上所述,AF的長為1或.
甲
乙
丙
丁
平均數(shù)
97
95
97
93
方差
0.3
1.2
1.3
0.6
成績(分)班級
甲
1
1
3
4
6
乙
1
2
3
5
4
平均數(shù)
眾數(shù)
中位數(shù)
方差
甲
92
a
93
乙
90
87
b
這是一份2024~2025學(xué)年廣西南寧市新民中學(xué)九年級(上)期中數(shù)學(xué)試卷(含答案),共18頁。
這是一份精品解析:廣西南寧市新民中學(xué)2023-2024學(xué)年九年級上學(xué)期開學(xué)考試數(shù)學(xué)試題,文件包含精品解析廣西南寧市新民中學(xué)2023-2024學(xué)年九年級上學(xué)期開學(xué)考試數(shù)學(xué)試題原卷版docx、精品解析廣西南寧市新民中學(xué)2023-2024學(xué)年九年級上學(xué)期開學(xué)考試數(shù)學(xué)試題解析版docx等2份試卷配套教學(xué)資源,其中試卷共32頁, 歡迎下載使用。
這是一份2024年廣西南寧市新民中學(xué)九上數(shù)學(xué)開學(xué)綜合測試試題【含答案】,共25頁。試卷主要包含了選擇題,填空題,解答題等內(nèi)容,歡迎下載使用。
廣西南寧市青秀區(qū)新民中學(xué)2023-2024學(xué)年九年級下學(xué)期開學(xué)考試數(shù)學(xué)試題(原卷版)
廣西南寧市青秀區(qū)新民中學(xué)2023-2024學(xué)年九年級下學(xué)期開學(xué)考試數(shù)學(xué)試題(解析版)
31,廣西南寧市青秀區(qū)新民中學(xué)2023—2024學(xué)年九年級下學(xué)期開學(xué)考試數(shù)學(xué)試卷
廣西南寧市青秀區(qū)新民中學(xué)2023—2024學(xué)年九年級下學(xué)期開學(xué)考試數(shù)學(xué)試卷
微信掃碼,快速注冊
注冊成功