
命題點(diǎn)1 將不等式轉(zhuǎn)化為函數(shù)的最值問題
例1 [2023新高考卷Ⅱ節(jié)選]證明:當(dāng)0<x<1時(shí),x-x2<sin x<x.
解析 令h(x)=x-x2-sin x,
則h'(x)=1-2x-cs x,
令p(x)=1-2x-cs x,則p'(x)=-2+sin x<0,
所以p(x)即h'(x)單調(diào)遞減,又h'(0)=0,
所以當(dāng)0<x<1時(shí),h'(x)<h'(0)=0,h(x)單調(diào)遞減,
所以當(dāng)0<x<1時(shí),h(x)<h(0)=0,即x-x2<sin x.
令g(x)=sin x-x,則g'(x)=cs x-1<0,x∈(0,1),
所以g(x)單調(diào)遞減,又g(0)=0,
所以當(dāng)0<x<1時(shí),g(x)<g(0)=0,即sin x<x.
綜上,當(dāng)0<x<1時(shí),x-x2<sin x<x.
方法技巧
(1)利用函數(shù)的單調(diào)性和最值直接證明.
(2)證明不等式f(x)>g(x)轉(zhuǎn)化為證明f(x)-g(x)>0,進(jìn)而構(gòu)造輔助函數(shù)
h(x)=f(x)-g(x),通過研究函數(shù)h(x)的單調(diào)性,證明h(x)min>0.
訓(xùn)練1 [2024浙江寧波模擬]已知函數(shù)f(x)=ae2x+(a-4)ex-2x.
(1)討論f(x)的單調(diào)性;
(2)證明:當(dāng)a>1時(shí),f(x)>7ln a-a-4.
解析 (1)f '(x)=2ae2x+(a-4)ex-2=(aex-2)(2ex+1),(i)當(dāng)a≤0時(shí),
f '(x)<0,f(x)在(-∞,+∞)上單調(diào)遞減;
(ii)當(dāng)a>0時(shí),x∈(-∞,ln 2a)時(shí),f '(x)<0,x∈(ln 2a,+∞)時(shí),f '(x)>0,所以f(x)在(-∞,ln 2a)上單調(diào)遞減,在(ln2a,+∞)上單調(diào)遞增.
(2)由(1)知,當(dāng)a>1時(shí),f(x)min=f(ln 2a)=2-4a-2ln 2+2ln a.
要證f(x)>7ln a-a-4,只需證2-4a-2ln 2+2ln a>7ln a-a-4,即證6+a-4a-5ln a-2ln 2>0.
設(shè)g(a)=6+a-4a-5ln a-2ln 2,a>1,則g'(a)=1+4a2-5a=(a-1)(a-4)a2,當(dāng)1<a<4時(shí),g'(a)<0,當(dāng)a>4時(shí),g'(a)>0,
所以g(a)在(1,4)上單調(diào)遞減,在(4,+∞)上單調(diào)遞增,所以g(a)≥g(4)=9-12ln 2=3(3-ln 16),
又e3>2.73>16,故g(a)>0,證畢.
命題點(diǎn)2 將不等式轉(zhuǎn)化為兩個(gè)函數(shù)的最值進(jìn)行比較
例2 [2024湖北襄陽模擬節(jié)選]已知函數(shù)f(x)=aln x+x.當(dāng)a=1時(shí),證明:xf(x)<ex.
解析 當(dāng)a=1時(shí),要證xf(x)<ex,即證x2+xln x<ex,即證1+lnxx<exx2,x>0.
令函數(shù)g(x)=1+lnxx,則g'(x)=1-lnxx2.
令g'(x)>0,得x∈(0,e);令g'(x)<0,得x∈(e,+∞).
所以g(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減,
所以g(x)max=g(e)=1+1e.
令函數(shù)h(x)=exx2(x>0),則h'(x)=ex(x-2)x3.
當(dāng)x∈(0,2)時(shí),h'(x)<0;當(dāng)x∈(2,+∞)時(shí),h'(x)>0.
所以h(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,
所以h(x)min=h(2)=e24.
因?yàn)閑24-(1+1e)>0,所以h(x)min>g(x)max,
即1+lnxx<exx2,從而xf(x)<ex得證.
方法技巧
若直接求導(dǎo)比較復(fù)雜或無從下手時(shí),可將待證不等式進(jìn)行變形,構(gòu)造兩個(gè)函數(shù),轉(zhuǎn)化為兩個(gè)函數(shù)的最值問題(或找到可以傳遞的中間量a),即將不等式轉(zhuǎn)化為f(x)≥g(x)的形式,證明f(x)min≥g(x)max(或f(x)≥a≥g(x))即可.
訓(xùn)練2 已知函數(shù)f(x)=aln x+a+1x+x(a∈R).
(1)討論f(x)的單調(diào)性;
(2)若函數(shù)g(x)=1ex+1x,證明:當(dāng)a=1時(shí),f(x)>g(x).
解析 (1)f(x)的定義域?yàn)椋?,+∞),f '(x)=ax-a+1x2+1=x2+ax-(a+1)x2=[x+(a+1)](x-1)x2.
當(dāng)a≥-1時(shí),a+1≥0,所以x+(a+1)>0恒成立,所以當(dāng)x∈(0,1)時(shí),f '(x)<0,
當(dāng)x∈(1,+∞)時(shí),f '(x)>0,所以f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
當(dāng)a<-1時(shí),分下面三種情況討論.
①當(dāng)a=-2時(shí),f '(x)=(x-1)2x2≥0恒成立,所以f(x)在(0,+∞)上單調(diào)遞增;
②當(dāng)a<-2時(shí),-a-1>1,令f '(x)>0,解得0<x<1或x>-a-1,令f '(x)<0,解得1<x<-a-1,
所以f(x)在(0,1),(-a-1,+∞)上單調(diào)遞增,在(1,-a-1)上單調(diào)遞減;
③當(dāng)-2<a<-1時(shí),0<-a-1<1,令f '(x)>0,解得0<x<-a-1或x>1,令
f '(x)<0,解得-a-1<x<1,
所以f(x)在(0,-a-1),(1,+∞)上單調(diào)遞增,在(-a-1,1)上單調(diào)遞減.
綜上,當(dāng)a<-2時(shí),f(x)在(0,1),(-a-1,+∞)上單調(diào)遞增,在(1,-a-1)上單調(diào)遞減;當(dāng)a=-2時(shí),f(x)在(0,+∞)上單調(diào)遞增;當(dāng)-2<a<-1時(shí),
f(x)在(0,-a-1),(1,+∞)上單調(diào)遞增,在(-a-1,1)上單調(diào)遞減;當(dāng)a≥-1時(shí),f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
(2)當(dāng)a=1時(shí),要證f(x)>g(x)(x>0),即證ln x+2x+x>1ex+1x(x>0),即證xln x+x2+1>xex(x>0).(不等式中既含指數(shù)式,又含對(duì)數(shù)式,若直接作差構(gòu)造函數(shù),求導(dǎo)分析比較困難,可以考慮指、對(duì)分離,構(gòu)造雙函數(shù)證明)
設(shè)G(x)=xex(x>0),易知G(x)=xex在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
所以G(x)max=G(1)=1e.
設(shè)F(x)=xln x+x2+1(x>0),則F'(x)=ln x+2x+1(x>0).
因?yàn)楹瘮?shù)F'(x)在(0,+∞)上單調(diào)遞增,而F'(1e)=2e>0,F(xiàn)'(1e2)=-1+2e2<0,
所以存在x0∈(1e2,1e),使得F'(x0)=0,且ln x0=-2x0-1,
所以當(dāng)x∈(0,x0)時(shí),F(xiàn)'(x)<0,當(dāng)x∈(x0,+∞)時(shí),F(xiàn)'(x)>0,
所以F(x)在(0,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增.
所以F(x)min=F(x0)=x0ln x0+x02+1=x0(-2x0-1)+x02+1=-x02-x0+1.
設(shè)H(x)=-x2-x+1,顯然該函數(shù)在(1e2,1e)上單調(diào)遞減,
所以H(x0)>H(1e),即-x02-x0+1>-1e2-1e+1,
而-1e2-1e+1>1e,所以-x02-x0+1>1e,即F(x)min=F(x0)>1e=G(x)max.
故當(dāng)x>0時(shí),F(xiàn)(x)>G(x)恒成立,
所以當(dāng)a=1時(shí),f(x)>g(x)成立,得證.
命題點(diǎn)3 放縮法證明不等式
例3 [2023成都七中校考模擬預(yù)測(cè)]已知函數(shù)f(x)=cs x+a2x2-1,a∈R.
(1)若x=0是函數(shù)f(x)唯一的極小值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)證明:sin312+sin324+sin338+…+sin32 02322 023<2.
解析 (1)f '(x)=-sin x+ax,且f '(0)=0,令g(x)=f '(x),則g'(x)=
-cs x+a.
①當(dāng)a≥1時(shí),g'(x)≥0且g'(x)不恒為0,則g(x)單調(diào)遞增,
當(dāng)x>0時(shí),g(x)=f '(x)>g(0)=0,當(dāng)x<0時(shí),g(x)=f '(x)<g(0)=0,即當(dāng)x>0時(shí),f(x)單調(diào)遞增,當(dāng)x<0時(shí),f(x)單調(diào)遞減,此時(shí)x=0是函數(shù)f(x)唯一的極小值點(diǎn).
②當(dāng)a<1時(shí),g'(0)=-1+a<0,所以存在δ>0使得當(dāng)x∈(0,δ)時(shí),g(x)=
f '(x)在(0,δ)上單調(diào)遞減,即當(dāng)x∈(0,δ)時(shí),f '(x)<f '(0)=0,所以f(x)在(0,δ)上單調(diào)遞減,與x=0是函數(shù)f(x)唯一的極小值點(diǎn)矛盾.
綜上,實(shí)數(shù)a的取值范圍為[1,+∞).
(2)由(1)可知,當(dāng)a=1且x>0時(shí),-sin x+x>0,即當(dāng)x>0時(shí),x>sin x,
故當(dāng)x>0且x∈[2kπ,π+2kπ],k∈N時(shí),sin3x<x2,即sin3x<x,
故可得sin312+sin324+sin338+…+sin32 02322 023<12+24+38+…+2 02322 023.
令S=12+24+38+…+2 02322 023,
則12S=14+28+316+…+2 02322 024,兩式相減可得12S=12+14+18+…+122 023-2 02322 024,化簡(jiǎn)可得S=2×[1-(12)2 023-2 02322 024]<2.
故sin312+sin324+sin338+…+sin32 02322 023<2.
方法技巧
1.利用放縮法證明不等式的思路
一是會(huì)放縮,即從所求證的不等式入手,利用分析法,進(jìn)行轉(zhuǎn)化,尋找可放大或縮小的條件;
二是會(huì)構(gòu)造函數(shù),即通過構(gòu)造輔助函數(shù),把所求證的不等式進(jìn)行轉(zhuǎn)化;
三是借用導(dǎo)數(shù),即會(huì)利用導(dǎo)數(shù)的工具性,研究新構(gòu)造函數(shù)的性質(zhì),進(jìn)而求解.
2.常見放縮公式
(1)ex≥x+1(當(dāng)且僅當(dāng)x=0時(shí)取等號(hào));
(2)ln(x+1)≤x(x>-1)(當(dāng)且僅當(dāng)x=0時(shí)取等號(hào));
(3)sin x≤x≤tan x(0≤x<π2)(當(dāng)且僅當(dāng)x=0時(shí)取等號(hào));
(4)sin x≥x≥tan x(-π2<x≤0)(當(dāng)且僅當(dāng)x=0時(shí)取等號(hào)).
訓(xùn)練3 [2024南通部分學(xué)校聯(lián)考]已知函數(shù)f(x)=ln x+ax,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=34時(shí),證明:x3>f(x).
解析 (1)f(x)的定義域?yàn)椋?,+∞),f '(x)=1x+a=ax+1x,當(dāng)a≥0時(shí),f '(x)>0,此時(shí)f(x)在(0,+∞)上單調(diào)遞增.
當(dāng)a<0時(shí),令f '(x)>0,得x<-1a,可知f(x)在(0,-1a)上單調(diào)遞增;
令f '(x)<0,得x>-1a,可知f(x)在(-1a,+∞)上單調(diào)遞減.
綜上,當(dāng)a≥0時(shí),f(x)在(0,+∞)上單調(diào)遞增;當(dāng)a<0時(shí),f(x)在(0,-1a)上單調(diào)遞增,在(-1a,+∞)上單調(diào)遞減.
(2)當(dāng)a=34時(shí),x3>f(x),即x3>ln x+34x.
令h(x)=x-1-ln x,則h'(x)=1-1x=x-1x,令h'(x)>0,則x>1;令h'(x)<0,則0<x<1.所以h(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以h(x)≥h(1)=0,即x-1≥ln x(等號(hào)成立的條件是x=1).
欲證x3>ln x+34x,只需證x3>x-1+34x=74x-1(x>0).
設(shè)g(x)=x3-74x+1(x>0),則g'(x)=3x2-74(x>0).
令g'(x)=0,求得x=216,
當(dāng)x∈(0,216)時(shí),g'(x)<0,可知g(x)在(0,216)上單調(diào)遞減;
當(dāng)x∈(216,+∞)時(shí),g'(x)>0,可知g(x)在(216,+∞)上單調(diào)遞增.
所以g(x)≥g(216)=72172-72124+1=1-72136>0,
即x3>x-1+34x(x>0),
所以x3>ln x+34x,即x3>f(x).
思維幫·提升思維 快速解題
凹凸反轉(zhuǎn)在不等式證明問題中的應(yīng)用
如果要證明的不等式由指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、多項(xiàng)式函數(shù)組合而成,往往進(jìn)行指對(duì)分離,轉(zhuǎn)化為證明g(x)≥h(x)恒成立,分別求g(x)min,h(x)max進(jìn)行證明,由于兩個(gè)函數(shù)圖象的凹凸性正好相反,所以這種證明不等式的方法稱為凹凸反轉(zhuǎn).
類型1 隔海相望
如圖所示,在g(x),h(x)圖象之間有一個(gè)帶型區(qū)域,所以我們把它形象地稱為“隔海相望”.這時(shí)必有g(shù)(x)>h(x).
例4 [2024陜西省咸陽市模擬]已知函數(shù)f(x)=x3-3ln x+11.
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)證明:當(dāng)x>0時(shí),f(x)>-x3+3x2+(3-x)ex.
解析 (1)∵f(x)=x3-3ln x+11,
∴函數(shù)f(x)的定義域?yàn)椋?,+∞)且f '(x)=3x2-3x=3(x3-1)x=3(x-1)(x2+x+1)x.
令f '(x)=0可得x=1,當(dāng)x∈(1,+∞)時(shí),f '(x)>0,當(dāng)x∈(0,1)時(shí),f '(x)<0,
∴f(x)在(1,+∞)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
(2)由(1)可得f(x)min=f(1)=12.
令g(x)=-x3+3x2+(3-x)ex(x>0),則g'(x)=-3x2+6x-ex+(3-x)ex=
(2-x)(ex+3x),
令g'(x)=0,可得x=2.
當(dāng)x∈(0,2)時(shí),g'(x)>0,當(dāng)x∈(2,+∞)時(shí),g'(x)<0,
∴g(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.
∴g(x)max=g(2)=e2+4,
∴f(x)min>g(x)max,則f(x)>g(x),
∴當(dāng)x>0時(shí),f(x)>-x3+3x2+(3-x)ex.
類型2 一線之隔
構(gòu)造的函數(shù)g(x),h(x),滿足g(x)min=h(x)max,如圖所示,但由于g(x),
h(x)不在同一處取到最值,所以必有g(shù)(x)>h(x).
例5 已知函數(shù)f(x)=ex+x2-x-1.
(1)求f(x)的最小值;
(2)證明:ex+xln x+x2-2x>0.
解析 (1)由題意可得 f '(x)=ex+2x-1,則函數(shù)f '(x)在R上單調(diào)遞增,且f '(0)=0.
由f '(x)>0,得x>0;
由f '(x)<0,得x<0.
則f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,故f(x)min=f(0)=0.
(2)要證ex+xln x+x2-2x>0,即證ex+x2-x-1>-xln x+x-1.
由(1)可知當(dāng)x>0時(shí),f(x)>0恒成立.
設(shè)g(x)=-xln x+x-1,x>0,則g'(x)=-ln x.
由g'(x)>0,得0<x<1;由 g'(x)<0,得x>1.
則g(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
從而g(x)≤g(1)=0,當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立.
故f(x)>g(x),即ex+xln x+x2-2x>0.
類型3 親密無間
構(gòu)造函數(shù)g(x),h(x),滿足g(x)min=h(x)max,且g(x),h(x)在同一處取到最值,如圖所示,這時(shí)g(x)≥h(x).
例6 已知函數(shù)f(x)=13x3+12x2+ax,g(x)=xex-1+xln x,f '(x),g'(x)分別為
f(x),g(x)的導(dǎo)函數(shù),且對(duì)任意的x1∈(0,1],存在x2∈(0,1],使f '(x1)≤
g'(x2)-2.
(1)求實(shí)數(shù)a的取值范圍;
(2)證明:g(x)≥f '(x).
解析 (1)因?yàn)閒(x)=13x3+12x2+ax,所以f '(x)=x2+x+a=(x+12)2+a-14,
所以f '(x)在區(qū)間(0,1]上單調(diào)遞增,故f '(x)max=f '(1)=a+2.
因?yàn)間(x)=xex-1+xln x,所以g'(x)=ex-1+xex-1+ln x+1=(x+1)ex-1+ln x+1.
令h(x)=(x+1)ex-1+ln x+1,則h'(x)=(x+2)ex-1+1x>0,故g'(x)在區(qū)間(0,1]上單調(diào)遞增,所以g'(x)max=g'(1)=3.
又對(duì)任意的x1∈(0,1],存在x2∈(0,1],使f '(x1)≤g'(x2)-2,
所以f '(x)max≤g'(x)max-2,
即a+2≤3-2,解得a≤-1,
故實(shí)數(shù)a的取值范圍為(-∞,-1].
(2)要證g(x)≥f '(x),即證xex-1+xln x≥x2+x+a,
由(1)知,a≤-1,故只需證xex-1+xln x≥x2+x-1.
因?yàn)閤>0,只需證ex-1+ln x≥x-1x+1,
即證ex-1-x≥-ln x-1x+1.
令s(x)=ex-1-x,x>0,則s'(x)=ex-1-1.
令s'(x)=0,解得x=1,則當(dāng)x∈(0,1)時(shí),s'(x)<0,s(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時(shí),s'(x)>0,s(x)單調(diào)遞增,
所以s(x)min=s(1)=0.
令F(x)=-ln x-1x+1,則F'(x)=-1x+1x2=-x-1x2.
令F'(x)=0,解得x=1,則當(dāng)x∈(0,1)時(shí),F(xiàn)'(x)>0,F(xiàn)(x)單調(diào)遞增;
當(dāng)x∈(1,+∞)時(shí),F(xiàn)'(x)<0,F(xiàn)(x)單調(diào)遞減,
所以F(x)max=F(1)=0,
所以s(x)min=s(1)=F(x)max=F(1)=0,
故g(x)≥f '(x).
1.[命題點(diǎn)1/2023雅禮中學(xué)二模]已知函數(shù)f(x)=2sin x-sin 2x.
(1)當(dāng)0≤x≤π時(shí),求f(x)的最大值;
(2)當(dāng)π3≤x≤π2時(shí),求證:f(x)>ln(x+1)(注:ln 2π3≈0.739).
解析 (1)f '(x)=2cs x-2cs 2x=2cs x-2(2cs2x-1)=(-cs x+1)(4cs x+2).(提示:對(duì)導(dǎo)函數(shù)解析式進(jìn)行整理,利用二倍角公式等整理成幾個(gè)代數(shù)式相乘的形式,方便求導(dǎo)函數(shù)的零點(diǎn))
當(dāng)0≤x≤π時(shí),令f '(x)>0,得-12<cs x<1,即0<x<2π3;令f '(x)<0,得cs x<-12,即2π3<x≤π.
所以函數(shù)f(x)在(0,2π3)上單調(diào)遞增,在(2π3,π)上單調(diào)遞減,
所以當(dāng)0≤x≤π時(shí),f(x)max=f(2π3)=332.
(2)設(shè)g(x)=f(x)-ln(x+1)=2sin x-sin 2x-ln(x+1),則g'(x)=-4cs2x+2cs x+2-1x+1.
當(dāng)π3≤x≤π2時(shí),1-1x+1>0,所以g'(x)>-4cs2x+2cs x+1,又-4cs2x+2cs x+1=
-4(cs x-14)2+54(0≤cs x≤12),
所以-4cs2x+2cs x+1>0,所以g'(x)>0在區(qū)間[π3,π2]上恒成立.
所以y=g(x)在區(qū)間[π3,π2]上單調(diào)遞增,
所以g(x)≥g(π3)=32-ln(π3+1)>32-ln 2π3≈32-0.739>0,
所以當(dāng)π3≤x≤π2時(shí),f(x)>ln(x+1).
2.[命題點(diǎn)1/2024湖北部分重點(diǎn)中學(xué)聯(lián)考]已知函數(shù)f(x)=ln x+a2x2-(a+1)x.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)x1,x2(0<x1<x2)是函數(shù)g(x)=f(x)+x的兩個(gè)極值點(diǎn),證明:g(x1)-
g(x2)<a2-ln a恒成立.
解析 (1)f(x)的定義域?yàn)椋?,+∞),
f'(x)=1x+ax-(a+1)=ax2-(a+1)x+1x=(x-1)(ax-1)x,
①當(dāng)a≤0時(shí),令f'(x)>0,得0<x<1,令f'x)<0,得x>1,所以f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;
②當(dāng)0<a<1時(shí),令f'(x)>0,得0<x<1或x>1a,令f'(x)<0,得1<x<1a,
所以f(x)在(0,1),(1a,+∞)上單調(diào)遞增,在(1,1a)上單調(diào)遞減;
③當(dāng)a=1時(shí),f'(x)≥0,所以f(x)在(0,+∞)上單調(diào)遞增;
④當(dāng)a>1時(shí),令f'(x)>0,得0<x<1a或x>1,令f'(x)<0,得1a<x<1,
所以f(x)在(0,1a),(1,+∞)上單調(diào)遞增,在(1a,1)上單調(diào)遞減.綜上,當(dāng)a≤0時(shí),f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;
當(dāng)0<a<1時(shí),f(x)在(0,1),(1a,+∞)上單調(diào)遞增,在(1,1a)上單調(diào)遞減;
當(dāng)a=1時(shí),f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)a>1時(shí),f(x)在(0,1a),(1,+∞)上單調(diào)遞增,在(1a,1)上單調(diào)遞減.
(2)g(x)=f(x)+x=ln x+a2x2-ax,則g(x)的定義域?yàn)椋?,+∞),g'(x)=1x+ax-a=ax2-ax+1x.
因?yàn)間(x)有兩個(gè)極值點(diǎn)x1,x2(0<x1<x2),所以關(guān)于x的方程ax2-ax+1=0的判別式Δ=a2-4a>0,且x1+x2=1,x1x2=1a>0,所以a>4.
因?yàn)?<x1<x2,所以x12<x1x2=1a,得0<x1<1a.
所以g(x1)-g(x2)=ln x1+a2x12-ax1-ln x2-a2x22+ax2=ln x1+ln(ax1)+a2-ax1,
設(shè)h(t)=ln t+ln(at)+a2-at,則h'(t)=2t-a,令h'(t)=0,得t=2a.
因?yàn)?a-1a=2-aa<0,所以2a<1a.
當(dāng)t∈(0,2a)時(shí),h'(t)>0,當(dāng)t∈(2a,1a)時(shí),h'(t)<0,
所以h(t)在區(qū)間(0,2a)上單調(diào)遞增,在區(qū)間(2a,1a)上單調(diào)遞減,所以h(t)在(0,1a)上的最大值為h(2a)=2ln 2-ln a+a2-2,而2ln 2-2<0,
所以h(2a)=2ln 2-ln a+a2-2<a2-ln a,
從而g(x1)-g(x2)<a2-ln a恒成立.
3.[命題點(diǎn)2]設(shè)函數(shù)f(x)=aexln x+bex-1x,曲線y=f(x)在點(diǎn)(1, f(1))處的切線方程為y=e(x-1)+2.
(1)求a,b;
(2)證明:f(x)>1.
解析 (1)函數(shù)f(x)的定義域?yàn)椋?,+∞),
f'(x)=aexln x+axex-bx2ex-1+bxex-1.
由題意可得f(1)=b=2,f'(1)=ae=e.
解得a=1,b=2.
(2)由(1)知,f(x)=exln x+2xex-1,
從而f(x)>1等價(jià)于xln x>xe-x-2e.
設(shè)函數(shù)g(x)=xln x,則g'(x)=1+ln x.
所以當(dāng)x∈(0,1e)時(shí),g'(x)<0;當(dāng)x∈(1e,+∞)時(shí),g'(x)>0.
故g(x)在(0,1e)上單調(diào)遞減,在(1e,+∞)上單調(diào)遞增,
從而g(x)在(0,+∞)上的最小值為g(1e)=-1e.
設(shè)函數(shù)h(x)=xe-x-2e,則h'(x)=e-x(1-x).
所以當(dāng)x∈(0,1)時(shí),h'(x)>0;當(dāng)x∈(1,+∞)時(shí),h'(x)<0.
故h(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
從而h(x)在(0,+∞)上的最大值為h(1)=-1e.
綜上,當(dāng)x>0時(shí),g(x)>h(x),即f(x)>1.
4.[命題點(diǎn)3/2023綿陽市一診]已知函數(shù)f(x)=2ex-x2-ax-2,當(dāng)x≥0時(shí),f(x)≥0.
(1)求a的取值范圍;
(2)求證:(1+22e-1)(1+22e2-1)(1+22e3-1)…(1+22en-1)<5(n∈N*).
解析 (1)由題意得f '(x)=2ex-2x-a.
令g(x)=2ex-2x-a,則當(dāng)x≥0時(shí),g'(x)=2ex-2≥0(當(dāng)且僅當(dāng)x=0時(shí)“=”成立),
∴函數(shù)f '(x)在區(qū)間[0,+∞)上單調(diào)遞增,
則當(dāng)x≥0時(shí),函數(shù)f '(x)≥f '(0)=2-a.
①當(dāng)2-a≥0,即a≤2時(shí),可得f '(x)≥f '(0)≥0在[0,+∞)上恒成立(“=”不恒成立),
∴函數(shù)f(x)在[0,+∞)上單調(diào)遞增.
∴f(x)≥f(0)=0在[0,+∞)上恒成立.
②當(dāng)2-a<0,即a>2時(shí),f '(0)=2-a<0,且存在x0>0,當(dāng)x∈[0,x0)時(shí),f '(x)<0,f(x)單調(diào)遞減.
又f(0)=0,∴當(dāng)x∈[0,x0)時(shí),f(x)<0,
這與當(dāng)x≥0時(shí),f(x)≥0矛盾.
綜上,實(shí)數(shù)a的取值范圍是(-∞,2].
(2)由(1)得當(dāng)a=2,x≥0時(shí),不等式f(x)=2ex-x2-2x-2≥0恒成立,
∴2ex-1≥x2+2x+1.
令x=n(n∈N*),得2en-1≥n2+2n+1,
∴22en-1≤2n2+2n+1<2n(n+2)=1n-1n+2.
令h(x)=ln x-x+1,則h'(x)=1-xx,
當(dāng)x∈(0,1)時(shí),h'(x)>0,h(x)在(0,1)上單調(diào)遞增;
當(dāng)x∈(1,+∞)時(shí),h'(x)<0,h(x)在(1,+∞)上單調(diào)遞減.
∴h(x)≤h(1)=0,則ln x≤x-1(當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立).
∴l(xiāng)n(1+22en-1)<22en-1<1n-1n+2,
∴l(xiāng)n[(1+22e-1)(1+22e2-1)(1+22e3-1)…(1+22en-1)]=ln(1+22e-1)+ln(1+22e2-1)+ln(1+22e3-1)+…+ln(1+22en-1)<(1-13)+(12-14)+(13-15)+…+(1n-1-1n+1)+(1n-1n+2)=32-1n+1-1n+2<ln e32=lne3<ln25=ln 5.
∴(1+22e-1)(1+22e2-1)(1+22e3-1)…(1+22en-1)<5.
學(xué)生用書·練習(xí)幫P285
1.[2024廣東省江門市部分學(xué)校聯(lián)考]已知函數(shù)f(x)=x(ln x+a),a∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)a≥1時(shí),f(x)<aex-1.
解析 (1)f(x)的定義域?yàn)椋?,+∞),f '(x)=ln x+1+a,
令f '(x)=0,得x=e-a-1.
由f '(x)<0,解得0<x<e-a-1,由f '(x)>0,解得x>e-a-1.
所以f(x)的單調(diào)遞減區(qū)間為(0,e-a-1),單調(diào)遞增區(qū)間為(e-a-1,+∞).
(2)令φ(x)=f(x)-aex+1=a(x-ex)+xln x+1(x>0),
若證f(x)<aex-1,即證φ(x)<0.
令k(x)=x-ex(x>0),則k'(x)=1-ex<0,所以k(x)在(0,+∞)上單調(diào)遞減,
所以k(x)≤0-e0=-1<0.
由a≥1,x-ex<0,可得φ(x)=a(x-ex)+xln x+1≤x-ex+xln x+1,
故若證φ(x)<0,
即證x-ex+xln x+1<0,
又x>0,即證exx-ln x-1x-1>0.
令g(x)=exx-ln x-1x-1(x>0),
則g'(x)=(x-1)exx2-1x+1x2=(x-1)(ex-1)x2(x>0).
因?yàn)楫?dāng)x>0時(shí),ex-1>0,
所以當(dāng)0<x<1時(shí),g'(x)<0,g(x)在(0,1)上單調(diào)遞減,當(dāng)x>1時(shí),g'(x)>0,g(x)在(1,+∞)上單調(diào)遞增,
所以g(x)min=g(1)=e-1-1=e-2>0,
所以g(x)>0,上式得證,結(jié)論成立.
2.[2024惠州調(diào)研]設(shè)函數(shù)f(x)=xex+ax2-2ax,g(x)=3lnxx+2ax+2ex,a∈R.
(1)討論f(x)的單調(diào)性;
(2)若a∈[-1,0),求證:g(x)<4a+3.
解析 (1)由題意得f'(x)=1-xex+2ax-2a=(x-1)·(2a-1ex).
①當(dāng)a≤0時(shí),2a-1ex<0,令f'(x)=0,則x=1,
當(dāng)x∈(-∞,1)時(shí),f'(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(1,+∞)時(shí),f'(x)<0,f(x)單調(diào)遞減.
②當(dāng)a>0時(shí),令f'(x)=0,則x1=1,x2=-ln 2a.
當(dāng)-ln 2a<1,即a>12e時(shí),
當(dāng)x∈(-∞,-ln 2a)和(1,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(-ln 2a,1)時(shí),f'(x)<0,f(x)單調(diào)遞減.
當(dāng)-ln 2a=1,即a=12e時(shí),f'(x)≥0,f(x)在R上單調(diào)遞增.
當(dāng)-ln 2a>1,即0<a<12e時(shí),
當(dāng)x∈(-∞,1)和(-ln 2a,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增;
當(dāng)x∈(1,-ln 2a)時(shí),f'(x)<0,f(x)單調(diào)遞減.
綜上所述,當(dāng)a≤0時(shí),f(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;
當(dāng)0<a<12e時(shí),f(x)在(-∞,1)和(-ln 2a,+∞)上單調(diào)遞增,在(1,-ln 2a)上單調(diào)遞減;
當(dāng)a=12e時(shí),f(x)在R上單調(diào)遞增;
當(dāng)a>12e時(shí),f(x)在(-∞,-ln 2a)和(1,+∞)上單調(diào)遞增,在(-ln 2a,1)上單調(diào)遞減.
(2)由題知g(x)的定義域?yàn)椋?,+∞),要證g(x)<4a+3,a∈[-1,0),
即證3lnxx+2ax+2ex<4a+3,a∈[-1,0),
即證32ln x+ax2+xex<(2a+32)x,a∈[-1,0),
即證xex+ax2-2ax<32(x-ln x),a∈[-1,0).
由(1)可得當(dāng)a∈[-1,0)時(shí),f(x)=xex+ax2-2ax在(-∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
故xex+ax2-2ax≤1e1+a-2a=1e-a,當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
故xex+ax2-2ax≤1e+1,當(dāng)且僅當(dāng)a=-1,x=1時(shí)取等號(hào).
設(shè)h(x)=32(x-ln x),則h'(x)=3(x-1)2x(x>0),
故當(dāng)x∈(0,1)時(shí),h'(x)<0,h(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時(shí),h'(x)>0,h(x)單調(diào)遞增.
故h(x)≥h(1)=32,即32(x-ln x)≥32.
故xex+ax2-2ax≤1e+1<32≤32(x-ln x),a∈[-1,0),
故g(x)<4a+3,a∈[-1,0)得證.
3.[2023廣州市二檢]已知函數(shù)f(x)=ln(1+x),g(x)=ax2+x.
(1)當(dāng)x>-1時(shí),f(x)≤g(x),求實(shí)數(shù)a的取值范圍;
(2)已知n∈N*,證明:sin 1n+1+sin 1n+2+…+sin 12n<ln 2.
解析 (1)解法一 由f(x)≤g(x),得ln(1+x)≤ax2+x,
若x=0,得0≤0,a∈R.
若x≠0,得ln(1+x)-xx2≤a.
記h(x)=ln(1+x)-xx2(x>-1),
則h'(x)=x2+2x1+x-2ln(1+x)x3.
記p(x)=x2+2x1+x-2ln(1+x),則p'(x)=x2(1+x)2≥0,p(x)單調(diào)遞增.
因?yàn)閜(0)=0,
所以當(dāng)x>0時(shí),p(x)>0,h'(x)>0;當(dāng)-1<x<0時(shí),p(x)<0,h'(x)>0.
所以h(x)在(-1,0)和(0,+∞)上單調(diào)遞增.
因?yàn)楫?dāng)x→+∞時(shí),ln(1+x)-xx2 → 0,
所以a≥0.
綜上所述,實(shí)數(shù)a的取值范圍是[0,+∞).
解法二 令h(x)=ln(1+x)-x(x>-1),
則h'(x)=11+x-1=-x1+x(x>-1),
當(dāng)-1<x<0時(shí),h'(x)>0,h(x)在(-1,0)上單調(diào)遞增;
當(dāng)x>0時(shí),h'(x)<0,h(x)在(0,+∞)上單調(diào)遞減.
所以當(dāng)x=0時(shí),h(x)取得最大值,且最大值為h(0)=0.
所以當(dāng)x>-1時(shí),h(x)≤h(0)=0,即ln(1+x)≤x.
所以當(dāng)a≥0時(shí),ln(1+x)≤x≤ax2+x,即f(x)≤g(x).
當(dāng)a<0時(shí),取x0=-1a>0,(提示:觀察g(x)=ax2+x=x(ax+1),得g(x)的其中一個(gè)零點(diǎn)為x0=-1a)
由于ln(1+x0)>ln 1=0,而ax02+x0=a·(-1a)2-1a=0,
所以ln(1+x0)>ax02+x0,
故f(x0)>g(x0),不符合題意.
綜上所述,實(shí)數(shù)a的取值范圍是[0,+∞).
(2)由(1)得ln(1+x)≤x,得ln x≤x-1,
得ln x≥1-1x(x>0),當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),
所以x>1時(shí),ln x>1-1x.
令1t=1-1x(t>1),得x=tt-1>1,
所以lntt-1>1t(t>1),
即ln t-ln(t-1)>1t(t>1),
所以1n+k <ln(n+k)-ln(n+k-1),k=1,2,…,n.
令φ(x)=x-sin x(x>0),則φ'(x)=1-cs x≥0,
故φ(x)在(0,+∞)上單調(diào)遞增.
所以φ(x)>0-sin 0=0.
所以sin x<x(x>0).
所以sin1n+k<1n+k<ln(n+k)-ln(n+k-1),k=1,2,…,n.
所以sin1n+1+sin1n+2+…+sin12n
<[ln(n+1)-ln n]+[ln(n+2)-ln(n+1)]+…+[ln(2n)-ln(2n-1)]
=ln(2n)-ln n
=ln 2.
4.[2023河北名校4月模擬]已知函數(shù)f(x)=ex-(x-a)2(x>0),e為自然對(duì)數(shù)的底數(shù),a∈R.
(1)討論函數(shù)f(x)的極值點(diǎn)個(gè)數(shù);
(2)當(dāng)函數(shù)f(x)存在唯一極值點(diǎn)x0時(shí),求證:a+esinx02<x0<-4a.
解析 (1)令g(x)=f '(x)=ex-2x+2a,則g'(x)=ex-2,
當(dāng)0<x<ln 2時(shí),g'(x)<0,f '(x)單調(diào)遞減;
當(dāng)x>ln 2時(shí),g'(x)>0,f '(x)單調(diào)遞增,
所以f '(x)≥f '(ln 2)=2(1-ln 2+a).
當(dāng)a≥ln 2-1=ln 2e時(shí),f '(x)≥0在(0,+∞)上恒成立,此時(shí)f(x)無極值點(diǎn).
當(dāng)a<ln 2-1=ln 2e時(shí),f '(ln 2)<0,e0-2×0+2a=1+2a.
若-12<a<ln 2e,則1+2a>0,f '(2)=e2-4+2a>0,所以f '(x)在(0,ln 2),
(ln 2,2)上各有一個(gè)零點(diǎn),即f(x)有兩個(gè)極值點(diǎn).
若a≤-12,則1+2a≤0,當(dāng)x→+∞時(shí),f '(x)→+∞,所以f '(x)在(0,+∞)上有一個(gè)零點(diǎn),即f(x)有一個(gè)極值點(diǎn).
綜上:當(dāng)a≤-12時(shí),f(x)有一個(gè)極值點(diǎn);當(dāng)-12<a<ln 2e時(shí),f(x)有兩個(gè)極值點(diǎn);
當(dāng)a≥ln 2e時(shí),f(x)無極值點(diǎn).
(2)由(1)知,當(dāng)f(x)存在唯一極值點(diǎn)x0時(shí),a≤-12,
f '(x0)=ex0-2x0+2a=0,
所以a=x0-ex02,
則要證a+esin x02<x0,只需證x0-ex02+esin x02<x0,即證sin x0-ex0-1<0.
對(duì)于y=x-sin x,x∈(0,+∞),y'=1-cs x≥0,即y=x-sin x在x∈(0,+∞)上單調(diào)遞增,
所以y=x-sin x>0,即x>sin x在x∈(0,+∞)上恒成立;
對(duì)于y=x-ex-1,x∈(0,+∞),y'=1-ex-1,在(0,1)上y'>0,在(1,+∞)上y'<0,
所以y=x-ex-1在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
所以ymax=1-e1-1=0,故y=x-ex-1≤0,即x≤ex-1在x∈(0,+∞)上恒成立.
綜上,ex-1≥x>sin x在x∈(0,+∞)上恒成立,故sin x0-ex0-1<0成立,從而a+esin x02<x0.
要證x0<-4a,即證2ex0-5x0>0.
令h(x)=2ex-5x,x∈(0,+∞),則h'(x)=2ex-5.
當(dāng)0<x<ln 52時(shí),h'(x)<0,h(x)單調(diào)遞減;
當(dāng)x>ln 52時(shí),h'(x)>0,h(x)單調(diào)遞增.
所以h(x)≥h(ln 52)=5(1-ln 52)=5ln2e5>0,
即2ex-5x>0在(0,+∞)上恒成立.
綜上,a+esin x02<x0<-4a.
這是一份備戰(zhàn)2025年高考數(shù)學(xué)精品教案第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用第2講導(dǎo)數(shù)與函數(shù)的單調(diào)性(Word版附解析),共18頁。
這是一份備戰(zhàn)2025年高考數(shù)學(xué)精品教案第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用第3講導(dǎo)數(shù)與函數(shù)的極值、最值(Word版附解析),共18頁。
這是一份備戰(zhàn)2025年高考數(shù)學(xué)精品教案第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用突破1構(gòu)造法在解決函數(shù)、導(dǎo)數(shù)問題中的應(yīng)用(Word版附解析),共12頁。
備戰(zhàn)2025年高考數(shù)學(xué)精品教案第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用突破2利用導(dǎo)數(shù)研究恒(能)成立問題(Word版附解析)
備戰(zhàn)2025年高考數(shù)學(xué)精品教案第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用突破4利用導(dǎo)數(shù)解決零點(diǎn)問題(Word版附解析)
備戰(zhàn)2025年高考數(shù)學(xué)精品教案第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用突破5極值點(diǎn)偏移問題(Word版附解析)
2025年高考數(shù)學(xué)精品教案第三章 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用 突破3 利用導(dǎo)數(shù)證明不等式
微信掃碼,快速注冊(cè)
注冊(cè)成功