
1.象棋起源于中國,中國象棋文化歷史悠久. 如圖所示是某次對弈的殘圖,如果建立平面直角坐標系,使棋子“帥”位于點(-2,-1)的位置,則在同一坐標系下,經(jīng)過棋子 “帥”和“馬”所在的點的一次函數(shù)的解析式為( )A. y=x+1 B. y=x-1C. y=2x+1 D. y=2x-1
2.[2022·潛江、天門、仙桃、江漢油田]二次函數(shù)y=(x+m)2+n 的圖象如圖所示,則一次函數(shù)y=mx+n 的圖象經(jīng)過( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D(zhuǎn). 第二、三、四象限
3.[2023·通遼]在平面直角坐標系中,一次函數(shù)y=2x-3 的圖象是( )
4.[2023·長沙]下列一次函數(shù)中,y隨x的增大而減小的函數(shù)是 ( )A. y=2x+1 B. y=x -4C. y=2x D. y=-x+1
5.[中考·婁底]將直線y=2x+1 向上平移2個單位長度,相當于 ( )A. 向左平移2個單位長度B. 向左平移1個單位長度C. 向右平移2個單位長度D. 向右平移1個單位長度
7.[2023·陜西]在同一平面直角坐標系中,函數(shù)y=ax和y=x+a(a 為常數(shù),a﹤0) 的圖象可能是( )
答案: B
9.[2023·蘇州]已知一次函數(shù)y=kx+b的圖象經(jīng)過點(1,3)和 (-1,2),則k2-b2=________.
10.[中考·盤錦]已知點A(x1,y1),B(x2,y2)在一次函數(shù)y=(a-2)x+1 的圖象上,當x1﹥x2 時,y1﹤y2,則a的取值范圍是 __________.
11.[中考·鐵嶺、葫蘆島]如圖,直線y=2x+4與x軸交于點A,與y軸交于點B,D為OB的中點,OCDE的頂點C在x軸上,頂點E在直線AB上,則OCDE的面積為 _______.
(1)求m的值和直線AB的函數(shù)解析式;
13.[2023·北京]在平面直角坐標系xOy中,函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點A(0,1)和B(1,2),與過點(0,4)且平行于x軸的直線交于點C.(1)求該函數(shù)的解析式及點C 的坐標;
14.[新視角·集約判斷題]如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x 軸的交點坐標為(-2,0),給出下列說法:① y 隨x 的增大而減?。虎陉P(guān)于x 的方程kx+b=0 的解為x=-2;③ kx+b﹥0 的解集是x ﹥-2;④ b﹤0.其中正確的有( )A. 1個 B. 2個 C. 3個 D. 4個
這是一份2024年春 中考數(shù)學 習題課件 第三部分 函數(shù) 第14課時 二次函數(shù)的應用,共24頁。
這是一份2024徐州中考數(shù)學二輪重點專題研究 第10課時 一次函數(shù)的圖象及性質(zhì)(課件),共20頁。PPT課件主要包含了一次函數(shù)的圖象性質(zhì),一次函數(shù)的平移,第4題圖,第5題圖,一次函數(shù)的圖象及性質(zhì),考點精講,圖象與性質(zhì),一次函數(shù)圖象的平移,kx+m+b,kx-m+b等內(nèi)容,歡迎下載使用。
這是一份2023中考復習大串講初中數(shù)學第10課時一次函數(shù)的圖象和性質(zhì) 課件(福建版),共43頁。PPT課件主要包含了圖象及性質(zhì),要點知識,題串考點,畫圖略,0-3,答案B,福建6年中考聚焦,y=-x+2,答案不唯一,y=5x-1等內(nèi)容,歡迎下載使用。
注冊成功