1.已知?4,a1,a2,?1四個(gè)實(shí)數(shù)成等差數(shù)列,4,b1,1三個(gè)正實(shí)數(shù)成等比數(shù)列,則a2?a1b1=( )
A. 12B. ?12C. ±12D. ±2
2.“G= ab”是“G是a、b的等比中項(xiàng)”的條件( )
A. 既不充分也不必要B. 充分不必要C. 必要不充分D. 充要
3.函數(shù)f(x)=?xex(a0)的漸近線方程為y=?x,
設(shè)直線y=(1+e)x到直線y=?x的角為θ,則tanθ=?1?(1+e)1?1?e=2+ee,
結(jié)合圖形可知,tan∠MON∈(0,2+ee).
故答案為:(0,2+ee).
作出函數(shù)f(x)的圖形,求出過點(diǎn)過原點(diǎn)且與函數(shù)f(x)=xex+e?e2(x≤0)的圖象相切的直線的方程,以及函數(shù)f(x)=? 1+x2,x>0的漸近線方程,利用到角公式可得tan∠MON的取值范圍.
本題主要考查分段函數(shù)及其應(yīng)用,考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.
17.【答案】解:(1)設(shè)該等差數(shù)列為{an},則a1=a,a2=4,a3=3a,
由已知有a+3a=8,得a1=a=2,公差d=4?2=2,
所以Sk=ka1+k(k?1)2?d=2k+k(k?1)2×2=k2+k,
由Sk=110,得k2+k?110=0,
解得k=10或k=?11(舍去),
故a=2,k=10;
(2)證明:由(1)得Sn=n(2+2n)2=n(n+1),
則bn=Snn=n+1,故bn+1?bn=(n+2)?(n+1)=1,
即數(shù)列{bn}是首項(xiàng)為2,公差為1的等差數(shù)列,
所以Tn=n(2+n+1)2=n(n+3)2.
【解析】(1)設(shè)該等差數(shù)列為{an},由等差中項(xiàng)可得a的方程,解得a,可得首項(xiàng)、公差,再由求和公式可得k;
(2)運(yùn)用等差數(shù)列的定義和通項(xiàng)公式、求和公式,即可得到所求結(jié)論.
本題考查等差數(shù)列的定義、通項(xiàng)公式和求和公式的運(yùn)用,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.
18.【答案】解:(1)∵雙曲線C1:x2?y24=1,
∴焦點(diǎn)坐標(biāo)為( 5,0),(? 5,0)
設(shè)雙曲線C2的標(biāo)準(zhǔn)方程為x2a2?y2b2=1(a>0,b>0),
∵雙曲線C2與雙曲線C1有相同焦點(diǎn),且過點(diǎn)P(4, 3)
∴a2+b2=516a2?3b2=1,解得a=2b=1
∴雙曲線C2的標(biāo)準(zhǔn)方程為x24?y2=1
(2)雙曲線C1的兩條漸近線為y=2x,y=?2x
由y=2xy=x+m,可得x=m,y=2m,∴A(m,2m)
由y=?2xy=x+m,可得x=?13m,y=23m,∴B(?13m,23m)
∴OA?OB=?13m2+43m2=m2
∵OA?OB=3
∴m2=3
∴m=± 3
【解析】(1)先確定雙曲線C1:x2?y24=1的焦點(diǎn)坐標(biāo),根據(jù)雙曲線C2與雙曲線C1有相同焦點(diǎn),且過點(diǎn)P(4, 3),建立方程組,從而可求雙曲線C2的標(biāo)準(zhǔn)方程;
(2)直線方程與雙曲線C1的兩條漸近線聯(lián)立,求出A、B兩點(diǎn)的坐標(biāo)用坐標(biāo),利用數(shù)量積,即可求得實(shí)數(shù)m的值.
本題考查雙曲線的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查直線與雙曲線的位置關(guān)系,考查向量的數(shù)量積,聯(lián)立方程組是關(guān)鍵.
19.【答案】解:(Ⅰ)當(dāng)x=40時(shí),汽車從甲地到乙地行駛了10040=2.5小時(shí),
耗油(1128000×403?380×40+8)×2.5=17.5(升).
答:當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地耗油17.5升.
(Ⅱ)當(dāng)速度為x千米/小時(shí)時(shí),汽車從甲地到乙地行駛了100x小時(shí),
設(shè)耗油量為h(x)升,
依題意得h(x)=(1128000x3?380x+8)?100x=11280x2+800x?154(01,當(dāng)k∈[?1,0]時(shí),k?csx≤1,k2?cs2x≤1.
由(Ⅱ)知,f(x)在(?∞,1]上是減函數(shù),要使f(k?csx)≥f(k2?cs2x),x∈R
只要k?csx≤k2?cs2x(x∈R)
即cs2x?csx≤k2?k(x∈R)①
設(shè)g(x)=cs2x?csx=(csx?12)2?14,則函數(shù)g(x)在R上的最大值為2.
要使①式恒成立,必須k2?k≥2,即k≥2或k≤?1.
所以,在區(qū)間[?1,0]上存在k=?1,使得f(k?csx)≥f(k2?cs2x)對(duì)任意的x∈R恒成立.
【解析】(Ⅰ)求出f(2)和f′(2),利用點(diǎn)斜式寫切線方程.
(Ⅱ)求導(dǎo),令f′(x)=0,再考慮f(x)的單調(diào)性,求極值即可.
(Ⅲ)有(Ⅱ)可知當(dāng)a>3時(shí)f(x)為單調(diào)函數(shù),利用單調(diào)性直接轉(zhuǎn)化為k?csx≤k2?cs2x恒成立,分離參數(shù)求解即可.
本小題主要考查運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì)、曲線的切線方程,函數(shù)的極值、解不等式等基礎(chǔ)知識(shí),考查綜合分析和解決問題的能力及分類討論的思想方法.x
(?∞,a3)
a3
(a3,a)
a
(a,+∞)
f′(x)
?
0
+
0
?
x
(?∞,a)
a
(a,a3)
a3
(a3,+∞)
f′(x)
?
0
+
0
?

相關(guān)試卷

2023-2024學(xué)年上海市普陀區(qū)曹楊二中高二(下)期中數(shù)學(xué)試卷:

這是一份2023-2024學(xué)年上海市普陀區(qū)曹楊二中高二(下)期中數(shù)學(xué)試卷,共11頁。

2023-2024學(xué)年上海市普陀區(qū)曹楊二中高三(上)期末數(shù)學(xué)試卷(含解析):

這是一份2023-2024學(xué)年上海市普陀區(qū)曹楊二中高三(上)期末數(shù)學(xué)試卷(含解析),共17頁。試卷主要包含了單選題,填空題,解答題等內(nèi)容,歡迎下載使用。

2023-2024學(xué)年上海市普陀區(qū)曹楊二中高三(上)開學(xué)數(shù)學(xué)試卷(含解析):

這是一份2023-2024學(xué)年上海市普陀區(qū)曹楊二中高三(上)開學(xué)數(shù)學(xué)試卷(含解析),共16頁。試卷主要包含了單選題,填空題,解答題等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

2022-2023學(xué)年上海市曹楊二中高一(下)期末數(shù)學(xué)試卷(含解析)

2022-2023學(xué)年上海市曹楊二中高一(下)期末數(shù)學(xué)試卷(含解析)

2022-2023學(xué)年上海市普陀區(qū)曹楊二中高二(上)期末數(shù)學(xué)試卷(含答案解析)

2022-2023學(xué)年上海市普陀區(qū)曹楊二中高二(上)期末數(shù)學(xué)試卷(含答案解析)

2022-2023學(xué)年上海市普陀區(qū)曹楊二中高一(上)期末數(shù)學(xué)試卷(含答案解析)

2022-2023學(xué)年上海市普陀區(qū)曹楊二中高一(上)期末數(shù)學(xué)試卷(含答案解析)

2020-2021學(xué)年上海市普陀區(qū)曹楊第二中學(xué)高二下學(xué)期期末數(shù)學(xué)試卷(含詳解)

2020-2021學(xué)年上海市普陀區(qū)曹楊第二中學(xué)高二下學(xué)期期末數(shù)學(xué)試卷(含詳解)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請(qǐng)掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請(qǐng) 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
期中專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊(cè)
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊(cè)

手機(jī)號(hào)注冊(cè)
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊(cè)即視為同意教習(xí)網(wǎng)「注冊(cè)協(xié)議」「隱私條款」
QQ注冊(cè)
手機(jī)號(hào)注冊(cè)
微信注冊(cè)

注冊(cè)成功

返回
頂部