
一、計算題。(32分)
1. 直接寫出得數。
【答案】16;;;;
300;;;
【解析】
【詳解】略
2. 解方程。
【答案】x=;x=
【解析】
【分析】根據等式的基本性質,給方程兩邊先同時減去,再同時除以,據此解第一個方程;
先把方程的左邊化簡為x,再給方程的兩邊同時除以,據此解第二個方程。
【詳解】x+=
解:x=
x=÷
x=
x-x=
解:x=
x=÷
x=
3. 下面各題,怎樣算簡便就怎樣算。
【答案】;;1
107;;
【解析】
【分析】÷+×,把除法換算成乘法,原式化為:×+×,再根據乘法分配律,原式化為:×(+),再進行計算;
17-17×,根據乘法分配律,原式化為:17×(1-),再進行計算;
÷[×(+)],先計算小口號里的減法,再計算中括號里的乘法,最后計算括號外的除法;
75×(+-),根據乘法分配律,原式化為:75×+75×-75×,再進行計算;
÷2+2÷,按照原式順序,先計算除法,再計算加法;
[-(-)]×,先計算小括號里的減法,再計算中括號里的減法,最后計算括號外的乘法。
【詳解】÷+×
=×+×
=×(+)
=×1
=
17-17×
=17×(1-)
=17×
=
÷[×(+)]
=÷[×(+)]
=÷[×]
=÷
=×
=1
75×(+-)
=75×+75×-75×
=50+60-3
=110-3
=107
÷2+2÷
=×+2×
=+5
=
[-(-)]×
=[-(-)]×
=[-]×
=×
=
二、填空題。(每空1分,計21分)
4. ( )( )( )。
【答案】 ①. 9 ②. 16 ③. 75
【解析】
【分析】根據分數與比之間的關系,=3∶4,再根據比的基本性質,比的前、后項都乘3就是9∶12;根據分數與除法之間的關系,=3÷4,再根據商不變的性質,被除數、除數都乘4就是12÷16;3÷4=0.75,把0.75的小數點向右移動兩位添上百分號就是75%。
【詳解】=9∶12=12÷16=75%
【點睛】此題主要是考查除法、分數、百分數、比之間的關系及轉化。利用它們之間的關系和性質進行轉化即可。
5. 在( )中填“<”“>”或“=”。
( ) ( ) ( )
【答案】 ①. > ②. < ③. >
【解析】
【分析】一個非0數,除以小于1的數,商大于被除數;一個非0數,除以大于1的數,商小于被除數;
一個非0數,乘大于1的數,積大于原數;一個非0數,乘小于1的數,積小于原數,據此解答。
【詳解】÷和
因為<1,所以÷>
×和
因為<1,所以×<
1÷和
因為<1,1÷>1
所以1÷>
【點睛】熟練掌握積與乘數的關系,商與被除數的關系是解答本題的關鍵。
6. 千米的是( )千米,( )噸比20噸多,45分鐘是1小時的( )%。
【答案】 ① ②. 35 ③. 75
【解析】
【分析】根據求一個數的幾分之幾是多少,用乘法解答;將20噸看作單位“1”,要求的數量相當于20的(1+),用乘法解答即可;把1小時化成60分,并看作單位“1”,根據求一個數是另一個數的百分之幾,用除法解答;
【詳解】×=(千米)
20×(1+)
=20×
=35(噸)
1小時=60分鐘
45÷60×100%
=0.75×100%
=75%
即 千米的是千米,35噸比20噸多,45分鐘是1小時的75%。
【點睛】本題考查求一個數的幾分之幾是多少用乘法,求一個數是另一個數的百分之幾用除法。
7. 在括號里填上合適的單位名稱。
一個集裝箱的體積約是40( );一臺冰箱的容積是306( )。
【答案】 ①. 立方米##m3 ②. 升##L
【解析】
【分析】根據體積和容積單位以及數據大小的認識,結合熟記生活經驗進行解答。
【詳解】一個集裝箱的體積約是40立方米
一臺冰箱的容積是306升
【點睛】此題考查根據情景選擇合適的計量單位,要注意聯系生活實際、計量單位和數據的大小,靈活地選擇。
8. 一輛汽車行千米用汽油升,平均1升汽油可行( )千米,行1千米用汽油( )升。
【答案】 ①. ②.
【解析】
【分析】已知這輛汽車行千米用汽油升,要求平均1升汽油可行多少千米,就是把路程千米看作總量,平均分配給升,求一份數多少,用÷解答;
要求平均行1千米用汽油的多少升,是把升汽油看作總量,平均分配給千米,求一份是多少,用÷解答。
【詳解】÷
=×
=(千米)
÷
=×
=(升)
一輛汽車行千米用汽油升,平均1升汽油可行千米,行1千米用汽油升。
【點睛】像這樣對比著兩個相似的問題,可以把其中一個量看作總量,求出每份數;再反過來求另一個問題。
9. 一個長10厘米,寬8厘米,高5厘米的長方體盒子,它的棱長和是( )厘米。
【答案】92
【解析】
【分析】根據長方體框架的棱長和公式:(長+寬+高)×4,代入求解即可。
詳解】(10+8+5)×4
=(18+5)×4
=23×4
=92(厘米)
即它的棱長和是92厘米。
【點睛】本題考查長方體棱長和公式的應用。
10. 將∶0.3化簡成最簡整數比是( )。
【答案】20∶9
【解析】
【分析】根據比的基本性質:比的前項和后項同時乘或除以一個不為0的數,比值不變,據此解答。
【詳解】∶0.3
=(×30)∶(0.3×30)
=20∶9
將∶0.3化簡成最簡整數比是20∶9。
【點睛】熟練掌握比的基本性質是解答本題的關鍵。
11. 現有水泥、黃沙和石子各48噸,按下圖的配比配制混凝土,黃沙用完時,水泥還剩( )噸,石子還缺( )噸。
【答案】 ①. 16 ②. 32
【解析】
【分析】由題意可知,配制這種混凝土需要水泥2份,黃沙3份,石子5份,先求出總份數,再分別求出三種材料各占混凝土質量的幾分之幾,這三種材料各有48噸,根據已知一個數的幾分之幾是的多少,求這個數,用除法求出當黃沙全部用完時能配成的這種混凝土的質量,再根據一個數乘分數的意義,用乘法求出需要水泥、石子的質量,進而求出水泥還剩下多少噸,石子需要增加多少噸。據此解答。
【詳解】48÷
=48÷
=160(噸)
48-160×
=48-160×
=48-32
=16(噸)
160×-48
=160×-48
=80-48
=32(噸)
即黃沙用完時,水泥還剩16噸,石子還缺32噸。
【點睛】本題考查按比分配問題的靈活運用,以及分數除法的靈活運用。
12. 大豆的出油率在24%一32%之間,200千克大豆最少可出油( )千克。
【答案】48
【解析】
【分析】分析題目,出油率是指出油的質量占大豆質量的百分比,把大豆的質量看作單位“1”,求200千克大豆最少可出油多少千克,就是用大豆的質量乘最低出油率,即24%,據此列式計算即可。
【詳解】200×24%=48(千克)
200千克大豆最少可出油48千克。
【點睛】理解出油率的含義是解答本題的關鍵。
13. 一個長方體的水池,長5米,寬4米,高2米。在水池里放入36立方米的水,這時水深( )米。
【答案】1.8
【解析】
【分析】水的體積=底面積×水深。
【詳解】36÷(5×4)
=36÷20
=1.8(米)
14. 一個棱長為5厘米的正方體的表面涂色,將它切成棱長為1厘米的小正方體,表面沒有涂色的正方體有( )個。
【答案】27
【解析】
【分析】因為5×5×5=125個;所以大正方體每條棱長上面都要5個小正方形體;根據立體圖形的知識可知:三個面均涂色的是各頂點處的小正方體;在各棱處,除去頂點處的正方體的有兩面涂色,在每個面上,除去棱上的正方體都是一面涂色的;所以用小正方體的總個數減去涂色的小正方體的個數,即可求出沒有涂色的小正方體的個數,據此解答。
【詳解】一共有小正方體的個數:5×5×5
=25×5
=125(個)
三面涂色的有:1×8=8(個)
兩面涂色的有:(5-2)×12
=3×12
=36(個)
一面涂色的有:(5-2)×(5-2)×6
=3×3×6
=9×6
=54(個)
沒有涂色的有:125-8-36-54
=117-36-54
=81-54
=27(個)
一個棱長為5厘米的正方體的表面涂色,將它切成棱長為1厘米的小正方體,表面沒有涂色的正方體有27個。
【點睛】此題主要考查表面涂色的正方體個數,考查空間想象能力,掌握規(guī)律是解題關鍵。
15. 一個長方體木箱靠墻角擺放(如圖),底面是邊長為5分米的正方形,露在外面的總面積是185平方分米。這個木箱的體積是( )立方分米。
【答案】400
【解析】
【分析】露在外面的面包括前面,上面和右面;上面的面是邊長是5分米的正方形,根據正方形面積公式:面積=邊長×邊長,代入數據,求出上面的面積;再用露在外面的總面積減去正方形的面積,求出前面和右面的面積的和,前面和右面面積和等于長是5×2,寬等于長方體的高的長方形面積,由此求出這個長方體的高,再根據長方體體積公式:體積=長×寬×高,代入數據,即可解答。
【詳解】(185-5×5)÷(5×2)×(5×5)
=(185-25)÷10×25
=160÷10×25
=16×25
=400(立方分米)
一個長方體木箱靠墻角擺放(如圖),底面是邊長為5分米的正方形,露在外面的總面積是185平方分米。這個木箱的體積是400立方分米。
【點睛】解答本題關是明確露在外面的面的面積是三個面的面積和,進而利用長方形面積公式和正方形面積公式求出長方體的高,再利用長方體體積公式進行解答。
三、選擇題。(每題1分,計5分)
16. 一杯糖水,其中糖10克,水40克。這杯糖水的濃度是( )。
A. 40%B. 25%C. 20%D. 10%
【答案】C
【解析】
【分析】糖水的濃度=糖的質量÷(糖的質量+水的質量)×100%,代入數據,即可解答。
【詳解】10÷(10+40)×100%
=10÷50×100%
=0.2×100%
=20%
一杯糖水,其中糖10克,水40克。這杯糖水的濃度是20%。
故答案為:C
【點睛】利用求一個數是另一個數的百分之幾(百分率問題)的知識進行解答。
17. 如圖,一個長方體中挖掉一個正方體,現在的表面積( )。
A. 比原來大B. 比原來小C. 和原來相同D. 無法確定
【答案】A
【解析】
【分析】根據題意可知,將這個長方體挖掉一個小正方體,表面積減少了2個小正方形的面積,但又增加了4個小正方形的面積,所以挖掉一個小正方體后的長方體比原來的長方體的表面積增加了2個小正方形的面積;據此解答。
【詳解】根據分析可知,如圖,一個長方體中挖掉一個正方體,現在的表面積比原來大。
故答案為:A
【點睛】本題考查長方體的表面積,明確表面積的意義是解答本題的關鍵。
18. 一個長6分米,寬4分米,高5分米的長方體紙盒,最多能放( )個棱長為2分米的正方體木塊。
A. 8B. 12C. 14D. 15
【答案】B
【解析】
【分析】分別求出長、寬、高中有幾個2分米,再求出個數的積即可。
【詳解】6÷2=3(個)
4÷2=2(個)
5÷2=2(個)……1(分米)
3×2×2=12(個)
故答案為:B
【點睛】解題時注意聯系實際,不能簡單的運用紙盒的體積÷木塊的體積來解答。
19. 如圖,有一個無蓋的正方體紙盒,下底標有字母“M”。下面( )是這個無蓋正方體的平面展開圖。
A. B. C. D.
【答案】A
【解析】
【分析】根據正方體11種展開圖的特征,結合題意分析即可解答。
【詳解】A.折疊成無蓋的正方體盒子后,字母M在所折成的盒子的底面,符合題意;
B.折疊成無蓋的正方體盒子后,字母M在所折成的盒子的側面,不符題意;
C.折疊成無蓋的正方體盒子后,字母M在所折成的盒子的側面,不符題意;
D.不能折疊成無蓋的正方體盒子,不符題意。
故答案為:A
【點睛】本題考查正方體的展開圖,要重點掌握。
20. 一個長方體和一個正方體的底面積相等,如果長方體的高是正方體棱長的2倍,那么,長方體與正方體的體積比是( )。
A. 2∶1B. 1∶2C. 1∶1D. 4∶1
【答案】A
【解析】
【分析】根據長方體和正方體的體積公式:體積=底面積×高,再根據因數與積的變化規(guī)律,一個因數不變,另一個因數擴大2倍,積也擴大2倍,據此解答。
【詳解】個長方體和正方體的底面積相等,長方體的高是正方體棱長的2倍,根據長方體和正方體的體積公式:底面積×高;長方體的體積是正方體的2倍;
即長方體與正方體的體積比是2∶1。
一個長方體和一個正方體的底面積相等,如果長方體的高是正方體棱長的2倍,那么,長方體與正方體的體積比是2∶1。
故答案為:A
【點睛】本題考查長方體和正方體體積公式的應用,關鍵是熟記公式,靈活運用。
四、觀察與說理。(7分)
21. 下圖是一個長方體紙盒的平面展開圖,做這個紙盒需要多少平方厘米的紙?它的容積是多少?
【答案】112平方厘米;96立方厘米
【解析】
【分析】由展開圖可知,長方體的長是12厘米,長和寬的和是16厘米,則寬是:16-12=4厘米;高和寬的和是6厘米,則高是:6-4=2厘米。這個長方體紙盒是由5個面組成;求做這個紙盒需要的紙的面積,就是求這個長方體的表面積;根據長方體表面積公式:表面積=長×寬+(長×高+寬×高)×2,代入數據,求出需要紙的面積;求它的容積,就是求這個長方體的體積,根據長方體體積公式:體積=長×寬×高,代入數據,即可解答。
【詳解】長是12厘米
寬:16-12=4(厘米)
高:6-4=2(厘米)
12×4+(12×2+4×2)×2
=48+(24+8)×2
=48+32×2
=48+64
=112(平方厘米)
12×4×2
=48×2
=96(立方厘米)
答:做這個紙盒需要112平方厘米的紙,它的容積是96立方厘米。
【點睛】解答本題的關鍵根據展開圖確定長方體的長、寬和高的長度,再利用長方體表面積公式、體積公式進行解答。
22. 結合計算,說明下面兩個同學的表述是否正確?
王大伯在自家魚塘放養(yǎng)了200尾鯽魚苗,放養(yǎng)的草魚苗比鯽魚苗的少20尾。最終鯽魚苗成活70%,草魚苗成活90%。
【答案】小軍正確;小剛錯誤
【解析】
【分析】根據題意,用鯽魚苗的尾數×再減去20尾,求出草魚苗的尾數;
用草魚苗的尾數÷鯽魚苗的尾數,求出草魚苗是鯽魚苗的幾分之幾;
再用放入魚塘的草魚苗的尾數×草魚苗成活率,求出草魚苗成活的尾數;用放入魚塘的鯽魚苗的尾數×鯽魚苗成活率,求出鯽魚苗成活的尾數;再進行比較,即可解答。
【詳解】草魚苗:200×-20
=120-20
=100(尾)
100÷200=
放養(yǎng)的草魚苗是鯽魚苗的一半;小軍說法正確。
鯽魚苗成活尾數:200×70%=140(尾)
草魚苗成活尾數:100×90%=90(尾)
140>90
最終成活的草魚苗比鯽魚苗少;小剛說法錯誤。
答:小軍說法正確,小剛說法錯誤。
【點睛】根據求一個數的幾分之幾是多,求一個數占另一個數的幾分之幾;求一個數的百分之幾是多少的知識進行解答。
五、解決問題。(35分)
(一)只列式或方程不計算。
23. 只列式或方程不計算。
張老師存了50000元3年期的定期存款,年利率是5.22%。到期后可以從銀行取得本金和利息一共多少元?
【答案】50000+50000×5.22%×3
【解析】
【分析】根據本息和=本金+本金×利率×時間,代入即可求解。
【詳解】50000+50000×5.22%×3
=50000+2610×3
=50000+7830
=57830(元)
答:到期后可以從銀行取得本金和利息一共57830元。
【點睛】本題的關鍵是利率公式的運用。
24. 只列式或方程不計算。
某工廠原來生產一件產品成本60元,采用新制作工藝后,成本只需55元。現在生產一件產品,成本降低了百分之幾?
【答案】(60-55)÷60×100%
【解析】
【分析】本題把這種產品的原成本看作單位“1”,求降低了百分之幾,就是求降低的錢數是原成本的百分之幾,根據求一個數是另一個數的百分之幾用除法直接列式得出。
【詳解】(60-55)÷60×100%
=5÷60×100%
≈8.3%
答:成本降低了8.3%。
【點睛】本題的關鍵是求出降價的錢數,然后再利用求一個數比另一個數多百分之幾進行計算。
25. 只列式或方程不計算
王叔叔以七八折的優(yōu)惠價買了一臺冰箱,實際付了1170元。這臺冰箱原價多少元?
【答案】1170÷78%
【解析】
【分析】七八折就是現價是原價的78%;用現價÷78%,即1170÷78%;據此解答。
【詳解】七八折就是現價是原價的78%。
1170÷78%=1500(元)
答:這臺冰箱原價是1500元。
【點睛】本題考查折扣問題,打幾折就是現價是原價的百分之幾十。
26. 只列式或方程不計算。
李莊今年小麥產量28.5噸,比去年增產20%。去年小麥產量是多少噸?
【答案】28.5÷(1+25%)
【解析】
【分析】把去年小麥的產量看作單位“1”,今年的產量是去年的(1+20%),求單位“1”,用今年小麥的產量÷(1+20%),即可求出去年小麥的產量,列式:28.5÷(1+20%);據此解答。
【詳解】28.5÷(1+20%)
=28.5÷1.2
=23.75(噸)
答:去年小麥產量是23.75噸。
【點睛】利用已知比一個數多或少百分之幾是多少,求這個數的知識進行解答。
(二)以下各題請完整解答。(27分)
27. 某校課后服務開設了多種社團,其中航模社團人數是籃球社團的,象棋社團人數是籃球社團的。已知參加象棋社團有60人,參加航模社團的有多少人?
【答案】36人
【解析】
【分析】分析題目,把籃球社團的人數看作單位“1”,象棋社團的60人是籃球社團的,根據已知一個數的幾分之幾是多少,求這個數用除法列式求出籃球社團的人數;再根據航模社團的人數是籃球社團的,用籃球社團的人數乘即可求出參加航模社團的人數。
【詳解】60÷=90(人)
90×=36(人)
答:參加航模社團的有36人。
【點睛】先根據已知一個數的幾分之幾是多少,求這個數用除法求出籃球社團的人數是解答本題的關鍵。
28. 光明度假村要建一個長方體游泳池。長50米,寬35米,深2米。
(1)這個游泳池占地多少平方米?
(2)在游泳池底面和四壁抹水泥,抹水泥的面積是多少平方米?
(3)游泳池水深1.6米,水的體積是多少立方米?
【答案】(1)1750平方米;(2)2090平方米;(3)2800立方米。
【解析】
【分析】(1)求這個游泳池的占地面積,只與游泳池的底面面積有關,利用長方形的面積公式:長×寬即可解決。
(2)在游泳池底面和四壁抹水泥即沒有上面,只有5個面,根據公式:長×寬+(長×高+寬×高)×2即可求解。
(3)根據長方體的體積公式:長×寬×高即可求解。
【詳解】(1)50×35=1750(平方米)
答:這個游泳池占地1750平方米。
(2)50×35+(50×2+35×2)×2
=1750+(100+70)×2
=1750+170×2
=1750+340
=2090(平方米)
答:抹水泥的面積是2090平方米。
(3)50×35×1.6
=1750×1.6
=2800(立方米)
答:水的體積是2800立方米。
【點睛】本題考查長方體的表面積和體積公式,要重點掌握。
29. 青青農場種植大豆和玉米面積的比是4∶7,大豆種植面積比玉米少36公頃,那么玉米種植面積是多少公頃?
【答案】84公頃
【解析】
【分析】根據題意,青青農場種植大豆和玉米面積的比是4∶7,就是把種植大豆面積和種植玉米面積看作4份和7份;玉米種植面積比大豆多了(7-4)份,對應的是大豆種植面積比玉米少36公頃,即玉米種植面積比大豆種植面積多了36公頃;36公頃對應的是玉米比大豆多的份數,用36除以玉米比大豆多的份數,求出一份是多少,再乘7,即可求出玉米種植面積。
【詳解】36÷(7-4)×7
=36÷3×7
=12×7
=84(公頃)
答:玉米種植面積是84公頃。
【點睛】解答本題的關鍵是明確玉米比大豆多的份數就是大豆種植面積比玉米少的公頃數。
30. 每件上衣比每條褲子貴80元。求上衣和褲子的單價各是多少元?
【答案】上衣310元,褲子230元
【解析】
【分析】根據圖可知,2件上衣和3條褲子的錢數是1310元,又每件上衣比每條褲子貴80元,那么2件上衣和3條褲子的錢數相當于5條褲子的錢數加上2×80元是1310元,用1310減去2×80,求出5條褲子的錢數,再除以5即可求出褲子的單價,然后求出上衣的單價。據此解答即可。
【詳解】(1310-2×80)÷5
=(1310-160)÷5
=1150÷5
=230(元)
230+80=310(元)
答:上衣的單價是310元,褲子的單價是230元。
【點睛】本題考查了簡單的等量代換的運用。
31. 某服裝廠生產一批校服,前10天完成的套數與這批校服總套數的比是1∶3,如果再生產150套,正好完成這批校服的40%,這批校服共有多少套?
【答案】2250套
【解析】
【詳解】40%=
150÷=150÷=2250(套)
①小軍說:“放養(yǎng)的草魚苗是鯽魚苗的一半?!?br>②小剛說:“最終成活的草魚苗比鯽魚苗更多?!?br>
這是一份2022年江蘇省南京市鼓樓區(qū)小升初真題數學試卷及答案,共18頁。試卷主要包含了直接寫出得數,求未知數x.,我最聰明,x和y都不為0等內容,歡迎下載使用。
這是一份江蘇省南京市鼓樓區(qū)力學小學蘇教版六年級上冊期末測試數學試卷,文件包含江蘇省南京市鼓樓區(qū)力學小學蘇教版六年級上冊期末測試數學試卷原卷版docx、江蘇省南京市鼓樓區(qū)力學小學蘇教版六年級上冊期末測試數學試卷解析版docx等2份試卷配套教學資源,其中試卷共22頁, 歡迎下載使用。
這是一份江蘇省南京市鼓樓區(qū)蘇教版四年級2022-2023學年下冊期末測試數學試卷,文件包含江蘇省南京市鼓樓區(qū)蘇教版四年級下冊期末測試數學試卷原卷版docx、江蘇省南京市鼓樓區(qū)蘇教版四年級下冊期末測試數學試卷解析版docx等2份試卷配套教學資源,其中試卷共24頁, 歡迎下載使用。
注冊成功