
1、△ABC中,,則,∠A=( )
A、70°B、55°C、50°D、40°
2、若,則下列不等式不成立的是( )
A、B、C、D、
3、若的解集為,則a的取值范圍是( )
A、B、C、D、
4、若等腰三角形兩邊長分別為6cm,3cm,則它的周長為( )
A、9cmB、12cmC、15cm或12cmD、15cm
5、已知△ABC中,A(-2,-2),B(2,0),C(1,-2),將△ABC平移后點A對應點的坐標為(-3,-2),則B的對應點的坐標為( )
A、(2,1)B、(2,2)C、(1,0)D、(1,3)
6.如圖,AD是△ABC的角平分線,,垂足為F,,△ADG和△AED的面積分別為60和35,則△EDF的面積為( )
A、25B、5.5C、7.5D、12.5
二、填空題(18分)
7、x與2的差不大于1,用不等式為______.
8、在△ABC中,,CD平分∠ACB,,則∠BDC的度數為______.
9、如圖△ABC中,,BC的中垂線l與AC交于D,則△ABD的周長為______.
10、已知函數和的圖像交于P,則不等式的解集為______.
更多優(yōu)質滋源請 家 威杏 MXSJ663 11、在△ABC中,,,將△ABP繞點A逆時針旋轉后能與△ACP'重合,若,則PP'=______.
12、若關于x的不等式組的解集是,則a的取值范圍是______.
三、本大題共5題,每題6分,共30分)
13、解不等式并把解集在數軸上表示出來
14、解不等式組
15、僅用無刻度的尺在網格中完成下列作圖(保留作圖痕跡)
(1)在圖(1)中找一點,使,連接CM.
(2)在圖(2)中作的垂直平分線.
16、如圖,以等腰直角三角形ABC的斜邊AB為邊向內作等邊△ABD,連接DC,以DC為邊作等邊△DCE,B、E在C、D的同側,已知,求BE的長.
17、關于x的不等式組只有4個整數解,求a的取值范圍.
四.簡答題(本題共3大題,每題8分共24分)
18、某種產品的成本為每件30元,現有A、B兩種銷售方式:A方式是由生產單位門市部銷售,每件56元,但每月需支付工時費用和管理費用共5000元;B方式是直接批發(fā)給商場,每件48元,請問根據該單位生產能力情況說明,選擇那種銷售方式利潤較好.
19、(8分)△ABC是邊長為4cm的等邊三角形,動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當P到達點B時,P、Q兩點停止運動,設P點運動時間為t(s),當t為值時,△PBQ為RT△?
20、(8分)對于實數x,我們規(guī)定[x]表示不大于x的最大整數,例如[1.2]=1.
(1)[0.5]=______;[-2.5]=______.
(2)若,求x的取值范圍.
五.簡答題(本題共2大題,每題9分共18分)
21、某果農收獲荔枝30t,香蕉13t,現計劃租用甲、乙兩種貨車共10輛,將這兩種水果全部運往深圳,已知甲種貨車每輛可以運荔枝4t和香蕉1t,乙種貨車每輛可運荔枝和香蕉2t.
①該果農安排甲乙兩種貨車時有幾種方案?請你幫忙設計出來?
②若甲種貨車每輛付運費2000元,乙種貨車每輛付運費1300元,則該果農應該選擇哪種方案運費最少?最少運費是多少?
22、等邊△ABC的邊長為1,△BCD是度的等腰三角形,延長AC至E,使,連DE,以D為頂點做等邊△DMN,兩邊分別交AB、AC于M、N
①圖中有兩個三角形可以相互旋轉得到嗎?若有指出這兩個三角形,并指出旋轉中心及旋轉角的度數.②圖中有成軸對稱圖形的兩個三角形嗎?若有,指出對稱軸.③求△AMN的周長.
六.簡答題(12分)
23、如圖,點O是等邊三角形ABC內一點,,,將△BOC,繞C點按順時針方向旋轉得△ADC,連OD.
①求證△COD是等邊三角形
②當為多少度時,△AOD是等腰三角形.
這是一份江西省 撫州市 臨川區(qū)江西省撫州市第一中學2023-2024年九年級上學期第二次月考數學試題,共27頁。試卷主要包含了選擇題,填空題,解答題等內容,歡迎下載使用。
這是一份江西省撫州市臨川區(qū)第四中學2023—-2024學年九年級上學期12月月考數學試題,共4頁。
這是一份江西省撫州市臨川區(qū)江西省撫州市第一中學2023-2024學年八年級上學期10月月考數學試題,共3頁。
注冊成功