考點12 函數(shù)的圖象9種常見考法歸類
考點一 作圖考點二 函數(shù)圖象的變換考點三 根據(jù)實際問題作函數(shù)的圖象考點四 給出函數(shù)確定圖象考點五 給出圖象確定函數(shù)考點六 由函數(shù)圖象確定參數(shù)范圍考點七 利用圖象研究函數(shù)的性質(zhì)考點八 利用圖象解不等式考點九 函數(shù)圖象的綜合應(yīng)用1. 利用描點法作圖的步驟(1)確定函數(shù)定義域;(2)化簡函數(shù)解析式;(3)討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性、周期性、最值等)(4)描點并作出函數(shù)圖象. 2. 利用圖象變換法作圖的步驟(1)平移變換水平平移:yf(x)的圖象向左平移a(a0)個單位長度,得到yf(xa)的圖象;yf(xa)(a0)的圖象可由yf(x)的圖象向右平移a個單位長度而得到. 豎直平移:yf(x)的圖象向上平移b(b0)個單位長度,得到yf(x)b的圖象;yf(x)b(b0)的圖象可由yf(x)的圖象向下平移b個單位長度而得到. 總之,對于平移變換,記憶口訣為左加右減,上加下減”. (2)對稱變換yf(x),y=-f(x)y=-f(x)三個函數(shù)的圖象與yf(x)的圖象分別關(guān)于y軸、x軸、原點對稱. 若函數(shù)的圖像關(guān)于直線對稱,則對定義域內(nèi)的任意都有(實質(zhì)上是圖像上關(guān)于直線對稱的兩點連線的中點橫坐標(biāo)為,即為常數(shù));若函數(shù)的圖像關(guān)于點對稱,則對定義域內(nèi)的任意都有函數(shù)的圖像關(guān)于對稱.(3)翻折變換y|f(x)|的圖象作法:作出yf(x)的圖象,將圖象位于x軸下方的部分以x軸為對稱軸翻折到x軸上方,上方的部分不變. yf(|x|)的圖象作法:作出yf(x)y軸右邊的圖象,以y軸為對稱軸將其翻折到左邊得yf(|x|)y軸左邊的圖象,右邊的部分不變. (4)伸縮變換要得到yAf(x)(A>0)的圖象,可將yf(x)的圖象上每點的縱坐標(biāo)伸(A>1)或縮(A<1)到原來的A. 要得到yf(ax)(a>0)的圖象,可將yf(x)的圖象上每點的橫坐標(biāo)伸(a<1)或縮(a>1)到原來的. 3. 畫函數(shù)圖象的一般方法:直接法:根據(jù)函數(shù)的特征描出圖象的關(guān)鍵點直接作出. ②圖象變換法:經(jīng)過平移、翻折、對稱、伸縮等得到,此時應(yīng)注意平移變換與伸縮變換的順序?qū)ψ儞Q單位及解析式的影響. 4. 圖象對稱性的證明(1)證明函數(shù)的對稱性,即證明其圖象上的任意一點關(guān)于對稱中心(或?qū)ΨQ軸)的對稱點仍在圖象上. (2)證明曲線C1C2的對稱性,即證明C1上任一點關(guān)于對稱中心(或?qū)ΨQ軸)的對稱點在C2上,反之亦然. 5. 確定函數(shù)的圖象確定函數(shù)的圖象主要用排除法. 要抓住函數(shù)的性質(zhì),定性分析:從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置. ②從函數(shù)的單調(diào)性,判斷圖象的變化趨勢. ③從周期性,判斷圖象的循環(huán)往復(fù). ④從函數(shù)的奇偶性,判斷圖象的對稱性. 同時要善于抓住圖象的特征,定量計算:從函數(shù)的特征點入手,利用特征點、特殊值的計算分析等解決問題. 6. 給出圖象確定函數(shù)由圖選式,一般通過圖象體現(xiàn)出的性質(zhì)利用排除法篩選. 與由式選圖類似,主要用奇偶性、單調(diào)性、特值、極限等綜合分析. 7. 由函數(shù)圖象確定參數(shù)范圍由函數(shù)圖象,研究其性質(zhì),進而確定參數(shù)值或范圍,體現(xiàn)了由形到數(shù)的思維. 8. 利用圖象研究函數(shù)的性質(zhì)函數(shù)圖象應(yīng)用廣泛,是研究函數(shù)性質(zhì)不可或缺的工具. 數(shù)形結(jié)合應(yīng)以快、準(zhǔn)為前提,充分利用數(shù)的嚴(yán)謹(jǐn)和的直觀,互為補充,互相滲透.9. 利用圖象解不等式與指、對、冪混合型函數(shù)相關(guān)的不等式問題,常通過數(shù)形結(jié)合轉(zhuǎn)化為函數(shù)圖象的交點和在交點兩側(cè)圖象的上、下位置關(guān)系來求解. 10. 函數(shù)圖象的綜合應(yīng)用(1)利用函數(shù)圖像判斷方程解的個數(shù).由題設(shè)條件作出所研究對象的圖像,利用圖像的直觀性得到方程解的個數(shù).(2)利用函數(shù)圖像求解不等式的解集及參數(shù)的取值范圍.先作出所研究對象的圖像,求出它們的交點,根據(jù)題意結(jié)合圖像寫出答案(3)利用函數(shù)圖像求函數(shù)的最值,先做出所涉及到的函數(shù)圖像,根據(jù)題目對函數(shù)的要求,從圖像上尋找取得最值的位置,計算出結(jié)果,這體現(xiàn)出了數(shù)形結(jié)合的思想。考點一 作圖1.(2023·全國·高三對口高考)作出下列函數(shù)的圖像:(1)(2)(3);(4)(5);(6)(7)2.(2023·河南洛陽·高三??茧A段練習(xí))設(shè)函數(shù).(1)作出的圖象;(2)討論函數(shù)的零點個數(shù).3.(2023·浙江杭州·高三??茧A段練習(xí))已知函數(shù).(1)在下面的平面直角坐標(biāo)系中,作出函數(shù)的圖象,并寫出單調(diào)增區(qū)間;(2)方程有四個不相等的實數(shù)根,求實數(shù)的取值范圍.4.(2023·內(nèi)蒙古烏蘭察布·統(tǒng)考二模)已知函數(shù)(1)畫出的圖象;(2),求a的值.5.(2023·天津河北·高三統(tǒng)考期中)已知函數(shù).(1)判斷函數(shù)的單調(diào)性,并求出函數(shù)的極值;(2)畫出函數(shù)的大致圖象;(3)討論方程的解的個數(shù).6.(2023·高三單元測試)已知是定義在R上的偶函數(shù),當(dāng)時,.(1)的解析式;(2)畫出的圖象;(3)求該函數(shù)的值域.7.(2023·安徽合肥·高三??计谀?/span>已知.(1)作出函數(shù)的圖象;(2)寫出函數(shù)的單調(diào)區(qū)間;(3)若函數(shù)有兩個零點,求實數(shù)m的取值范圍.考點 函數(shù)圖象的變換8.(2023·北京·高三統(tǒng)考學(xué)業(yè)考試)將函數(shù)的圖象向上平移1個單位長度,得到函數(shù)的圖象,則    A BC D9.(2023·北京豐臺·統(tǒng)考二模)為了得到函數(shù)的圖象,只需把函數(shù)的圖象上的所有點(    A.向左平移2個單位長度,再向上平移2個單位長度B.向右平移2個單位長度,再向下平移2個單位長度C.向左平移1個單位長度,再向上平移1個單位長度D.向右平移1個單位長度,再向上平移1個單位長度10.(2023·全國·高三專題練習(xí))函數(shù)的圖像是(    A BC D11.(2023·河北邯鄲·高三校聯(lián)考開學(xué)考試)將函數(shù)的圖象向右平移1個單位長度后,再向上平移4個單位長度,所得函數(shù)圖象與曲線關(guān)于直線對稱,則    A B C D412.(2023·全國·高三專題練習(xí))函數(shù)的圖象與的圖象關(guān)于軸對稱,再把的圖象向右平移1個單位長度后得到函數(shù)的圖象,則________.13.(2023·青海西寧·統(tǒng)考二模)已知圖1對應(yīng)的函數(shù)為,則圖2對應(yīng)的函數(shù)是(    A B C D14.(2023·全國·高三專題練習(xí))設(shè)函數(shù)y=的圖象與的圖象關(guān)于直線y=x對稱,若,實數(shù)m的值為________考點 根據(jù)實際問題作函數(shù)的圖象15.(2023·全國·高三專題練習(xí))列車從地出發(fā)直達外的地,途中要經(jīng)過離地,假設(shè)列車勻速前進,后從地到達地,則列車與地距離(單位:與行駛時間(單位:)的函數(shù)圖象為(    A BC D16.(2023·北京昌平·高三統(tǒng)考期末)某校航模小組進行無人機飛行測試,從某時刻開始15分鐘內(nèi)的速度(單位:米/分鐘)與飛行時間(單位:分鐘)的關(guān)系如圖所示.若定義速度差函數(shù)(單位:米/分鐘)為無人機在這個時間段內(nèi)的最大速度與最小速度的差,則的圖像為(    A BC D17.(2023·高三課時練習(xí))龜兔賽跑講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點.s1,s2分別表示烏龜和兔子經(jīng)過的路程,t為時間,則與故事情節(jié)相吻合的是(   A BC D18.(2023·高三單元測試)如圖,點P在邊長為1的正方形邊上運動,設(shè)MCD的中點,則當(dāng)P沿ABCM運動時,點P經(jīng)過的路程xAPM的面積y之間的函數(shù)的圖像大致是( ?。?/span>A BC D19.(2023·全國·高三專題練習(xí))如圖,正ABC的邊長為2,點D為邊AB的中點,點P沿著邊AC,CB運動到點B,記ADPx.函數(shù)fx)=|PB|2﹣|PA|2,則yfx)的圖象大致為(  )A BC D20.(2023·湖南長沙·高三長沙一中??茧A段練習(xí))青花瓷,又稱白地青花瓷,常簡稱青花,是中國瓷器的主流品種之一.如圖,這是景德鎮(zhèn)青花瓷,現(xiàn)往該青花瓷中勻速注水,則水的高度與時間的函數(shù)圖像大致是(    A BC D考點四 給出函數(shù)確定圖象21.(2023·四川成都·高三成都七中校考期中)函數(shù)的大致圖像為(    A BC D22.(2023·海南·校聯(lián)考模擬預(yù)測)函數(shù)的部分圖象大致是(    ABCD23.(海南省2023屆高三學(xué)業(yè)水平診斷(三)數(shù)學(xué)試題)函數(shù)的大致圖象是(    A BC D24.(2023·河南新鄉(xiāng)·統(tǒng)考三模)函數(shù)的部分圖象大致為(    A BC D25.(海南省??谑泻D鲜∞r(nóng)墾實驗中學(xué)等22023屆高三一模數(shù)學(xué)試題)若函數(shù),則的圖象大致為(    A BC D26.(2023·全國·高三專題練習(xí))函數(shù)的圖象可能為(       A BC D考點五 給出圖象確定函數(shù)27.(2023·江蘇南京·高三江蘇省高淳高級中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)的圖象如圖所示,則可以為(    A B C D28.(2023·陜西咸陽·統(tǒng)考三模)已知函數(shù)的部分圖象如圖所示,則它的解析式可能是(    A BC D29.(2023·全國·校聯(lián)考模擬預(yù)測)已知函數(shù)的部分圖象如下圖所示,則的解析式可能為(    A BC D30.(2023·寧夏石嘴山·平羅中學(xué)??寄M預(yù)測)已知函數(shù),如圖可能是下列哪個函數(shù)的圖象(    A BC D31.(2023·寧夏石嘴山·平羅中學(xué)??寄M預(yù)測)如圖是下列四個函數(shù)中的某個函數(shù)在區(qū)間上的大致圖象,則該函數(shù)是(    A BC D考點六 由函數(shù)圖象確定參數(shù)范圍32.(2023·高三課時練習(xí))已知函數(shù)為常數(shù),其中)的圖象如圖所示,則下列結(jié)論成立的是( ?。?/span>A  B C  D 33.(2023·山東青島·高三統(tǒng)考期中)函數(shù)的圖象如圖所示,則下列結(jié)論成立的是(    A BC D34多選2023·江西宜春)已知函數(shù),若函數(shù)的部分圖象如圖所示,則下列關(guān)于函數(shù)的結(jié)論中,正確的是(    ABC.圖象的對稱中心為D.在區(qū)間上單調(diào)遞增考點七 利用圖象研究函數(shù)的性質(zhì)35多選2023·江蘇常州·高三常州市北郊高級中學(xué)校考開學(xué)考試)已知函數(shù),則下列說法正確的是(    A.函數(shù)上是單調(diào)遞增B.函數(shù)上是單調(diào)遞増C.當(dāng)時,函數(shù)有最大值D.當(dāng)時,函數(shù)有最小值36多選2023·重慶·高三校聯(lián)考期中)已知函數(shù),且的對稱中心為,當(dāng)時,,則下列選項正確的是(    A的最小值是 B上單調(diào)遞減C的圖像關(guān)于直線對稱 D上的函數(shù)值大于037.(2023·全國·高三專題練習(xí)),,當(dāng)時,,則下列說法正確的是(    A.函數(shù)為奇函數(shù) B.函數(shù)上單調(diào)遞增C D.函數(shù)上單調(diào)遞減考點八 利用圖象解不等式38.(2023·北京平谷·高三統(tǒng)考期末)已知函數(shù),若,則x的范圍是___________39.(2023·全國·高三專題練習(xí))已知函數(shù),則不等式的解集是___________40.(2023·河南新鄉(xiāng)·統(tǒng)考三模)設(shè)函數(shù)的定義域為,滿足,且當(dāng)時,.若對任意,都有成立,則的取值范圍是(    A BC D41.(2023·陜西安康·陜西省安康中學(xué)??寄M預(yù)測)定義在上函數(shù)滿足,.當(dāng)時,,則下列選項能使成立的為(    A B C D考點九 函數(shù)圖象的綜合應(yīng)用42.(2023·浙江·高三階段練習(xí))已知關(guān)于x的函數(shù)的圖象有2個交點,則的取值范圍是 ___________.43.(2023·浙江衢州·高三校考階段練習(xí))已知函數(shù),若函數(shù)3個零點,則a的取值范圍是________44.(2023·重慶合川·高三重慶市合川中學(xué)??计谀?/span>已知函數(shù),若關(guān)于的方程0有五個不同的實數(shù)根,則實數(shù)m的取值范圍是( ?。?/span>A B C D45.(2023·遼寧·高三校聯(lián)考階段練習(xí))函數(shù)的圖像與函數(shù)的圖像在上有交點的橫坐標(biāo)之和為______46.(2023·四川廣安·高三統(tǒng)考期末)函數(shù),若,且,則的取值范圍是______47.(2023·高三課時練習(xí))已知函數(shù),若ab、c互不相等,且,則abc的取值范圍是(    A B C D
 

相關(guān)試卷

考點12 函數(shù)的圖象9種常見考法歸類-備戰(zhàn)高考數(shù)學(xué)一輪題型歸納與解題策略(新高考地區(qū)專用):

這是一份考點12 函數(shù)的圖象9種常見考法歸類-備戰(zhàn)高考數(shù)學(xué)一輪題型歸納與解題策略(新高考地區(qū)專用),文件包含考點12函數(shù)的圖象9種常見考法歸類原卷版docx、考點12函數(shù)的圖象9種常見考法歸類解析版docx等2份試卷配套教學(xué)資源,其中試卷共62頁, 歡迎下載使用。

考點12 函數(shù)的圖象9種常見考法歸類-【考點通關(guān)】備戰(zhàn)2024年高考數(shù)學(xué)一輪題型歸納與解題策略(新高考地區(qū)專用):

這是一份考點12 函數(shù)的圖象9種常見考法歸類-【考點通關(guān)】備戰(zhàn)2024年高考數(shù)學(xué)一輪題型歸納與解題策略(新高考地區(qū)專用),文件包含考點12函數(shù)的圖象9種常見考法歸類原卷版docx、考點12函數(shù)的圖象9種常見考法歸類解析版docx等2份試卷配套教學(xué)資源,其中試卷共62頁, 歡迎下載使用。

考點12 函數(shù)的圖象9種常見考法歸類(解析版)-【考點通關(guān)】備戰(zhàn)2024年高考數(shù)學(xué)一輪題型歸納與解題策略(新高考地區(qū)專用):

這是一份考點12 函數(shù)的圖象9種常見考法歸類(解析版)-【考點通關(guān)】備戰(zhàn)2024年高考數(shù)學(xué)一輪題型歸納與解題策略(新高考地區(qū)專用),共43頁。試卷主要包含了作圖,函數(shù)圖象的變換,根據(jù)實際問題作函數(shù)的圖象,給出函數(shù)確定圖象,給出圖象確定函數(shù),由函數(shù)圖象確定參數(shù)范圍,利用圖象研究函數(shù)的性質(zhì),利用圖象解不等式等內(nèi)容,歡迎下載使用。

英語朗讀寶
資料下載及使用幫助
版權(quán)申訴
  • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯誤問題請聯(lián)系客服,如若屬實,我們會補償您的損失
  • 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時請及時更新
  • 3.資料下載成功后可在60天以內(nèi)免費重復(fù)下載
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
  • 精品推薦
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

  • 0

    資料籃

  • 在線客服

    官方
    微信

    添加在線客服

    獲取1對1服務(wù)

  • 官方微信

    官方
    微信

    關(guān)注“教習(xí)網(wǎng)”公眾號

    打開微信就能找資料

  • 免費福利

    免費福利

返回
頂部