考點(diǎn)三十六  空間幾何體的表面積和體積知識(shí)梳理1圓柱、圓錐、圓臺(tái)的側(cè)面展開圖及側(cè)面積公式 側(cè)面展開圖側(cè)面積圓柱S側(cè)rl圓錐S側(cè)πrl圓臺(tái)S側(cè)π(r1r2)l直棱柱S側(cè)ch正棱錐S側(cè)ch正棱臺(tái)S側(cè)(cc)h                                   2.空間幾何體的表面積與體積公式 名稱幾何體  表面積體積柱體(棱柱和圓柱)S表面積S側(cè)2SVSh錐體(棱錐和圓錐)S表面積S側(cè)SVSh臺(tái)體(棱臺(tái)和圓臺(tái))S表面積S側(cè)SSV(SS)hSR2VπR3說明:(1)棱柱、棱錐、棱臺(tái)的表面積就是各面面積之和.(2)圓柱、圓錐、圓臺(tái)的側(cè)面展開圖分別是矩形、扇形、扇環(huán)形;它們的表面積等于側(cè)面積與底面面積之和.3.幾個(gè)有關(guān)球的結(jié)論(1)設(shè)正方體的棱長為a,球的半徑為R,則正方體的外接球,2Ra;正方體的內(nèi)切球,2Ra;球與正方體的各棱相切2Ra.(2)設(shè)長方體的同一頂點(diǎn)的三條棱長分別為a,b,c,外接球的半徑為R,2R.(3)正四面體的外接球與內(nèi)切球的半徑之比為31.典例剖析題型 簡單幾何體的表面積1 已知某幾何體的三視圖的正視圖和側(cè)視圖是全等的等腰梯形,俯視圖是兩個(gè)同心圓,如圖所示,則該幾何體的表面積為________答案  26π解析  由三視圖知該幾何體為上底直徑為2,下底直徑為6,高為2的圓臺(tái),則幾何體的表面積Sπ×1π×9π×(13)×26π.變式訓(xùn)練  某四棱錐的三視圖如圖所示,該四棱錐的表面積是______答案 1616解析  由三視圖知,四棱錐是底面邊長為4,高為2的正四棱錐,四棱錐的表面積是164××4×21616.解題要點(diǎn)  對于這類給出三視圖求表面積、體積的題,應(yīng)先根據(jù)三視圖換原實(shí)物圖,然后再求解.題型二  簡單幾何體的體積2 如下的三個(gè)圖中,上面的是一個(gè)長方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:cm)(1)在正視圖下面,按照畫三視圖的要求畫出該多面體的俯視圖;(2)按照給出的尺寸,求該多面體的體積.解析  (1)如圖.(2)所求多面體的體積VV長方體V正三棱錐4×4×6×(×2×2)×2(cm3)變式訓(xùn)練  某三棱錐的側(cè)視圖、俯視圖如圖所示,則該三棱錐的體積是______答案  1解析  由三棱錐的側(cè)視圖和俯視圖可知該三棱錐的底面是邊長為2的正三角形,故其底面積為;其側(cè)視圖也是邊長為2的正三角形,故側(cè)視圖中三角形的高即為三棱錐的高,可求出為,所以三棱錐的體積V××1.題型  球體有關(guān)表面積和體積3 一個(gè)幾何體的三視圖(單位:cm)如圖所示,則該幾何體的表面積是________cm2.答案 (1)4π12解析 (1)由三視圖知該幾何體為一個(gè)四棱柱、一個(gè)半圓柱和一個(gè)半球的組合體,其中四棱柱上表面與半球重合部分之外的面積為1×2×π×122,四棱柱中不重合的表面積為21×2×22×21×212,半圓柱中不重合的表面積為××2ππ,半球的表面積為×,所以該幾何體的表面積為12.變式訓(xùn)練  (2015新課標(biāo))圓柱被一個(gè)平面截去一部分后與半球(半徑為r)組成一個(gè)幾何體,該幾何體三視圖中的正視圖和俯視圖如圖所示.若該幾何體的表面積為1620π,則r______答案 2 解析 由正視圖與俯視圖想象出其直觀圖,然后進(jìn)行運(yùn)算求解.如圖,該幾何體是一個(gè)半球與一個(gè)半圓柱的組合體,球的半徑為r,圓柱的底面半徑為r,高為2r,則表面積S×r2πr24r2πr·2r(5π4)r2.S1620π(5π4)r21620π,r24,r2. 4 已知底面邊長為1,側(cè)棱長為的正四棱柱(底面是正方形的直棱柱)的各頂點(diǎn)均在同一個(gè)球面上,則該球的體積為______答案 解析 正四棱柱的外接球的球心為上下底面的中心連線的中點(diǎn),所以球的半徑r1,球的體積Vr3.解題要點(diǎn)  1.球的表面積公式:SR2;球的體積公式VπR32.注意掌握一些典型的球的切、接問題,以及相關(guān)的結(jié)論.如長方體外接球的半徑為R.對于一些問題,將球放到某個(gè)長方體(或正方體)中,然后利用相關(guān)結(jié)論問題便迎刃而解.當(dāng)堂練習(xí)1(2015安徽文)一個(gè)四面體的三視圖如圖所示,則該四面體的表面積是______答案 2解析 由幾何體的三視圖可知空間幾何體的直觀圖如圖所示.其表面積S2××2×12××()22.2(2015北京理)某三棱錐的三視圖如圖所示,則該三棱錐的表面積是______                          答案 22解析 該三棱錐的直觀圖如圖所示:                          DDEBC,交BCE,連接AE,則BC2,EC1,AD1,ED2,SSBCDSACDSABDSABC×2×2××1××1×2×22.3. (2015新課標(biāo))已知A,B是球O的球面上兩點(diǎn),AOB90°,C為該球面上的動(dòng)點(diǎn).若三棱錐OABC體積的最大值為36,則球O的表面積為______答案 144π解析 如圖,要使三棱錐OABCCOAB的體積最大,當(dāng)且僅當(dāng)點(diǎn)C到平面OAB的距離,即三棱錐COAB底面OAB上的高最大,其最大值為球O的半徑R,則VOABC最大VCOAB最大×SOAB×R××R2×RR336,所以R6,得SOR2×62144π.4(2015四川文)在三棱柱ABCA1B1C1中,BAC90°,其正視圖和側(cè)視圖都是邊長為1的正方形,俯視圖是直角邊的長為1的等腰直角三角形,設(shè)點(diǎn)M,NP分別是AB,BC,B1C1的中點(diǎn),則三棱錐PA1MN的體積是________答案 解析 由題意知還原后的幾何體是一個(gè)直放的三棱柱,三棱柱的底面是直角邊長為1的等腰直角三角形,高為1的直三棱柱,VPA1MNVA1PMN,AA1平面PMNVA1PMNVAPMN,VAPMN××1××,VPA1MN.5(2015浙江文)某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是______答案 解析 由三視圖可知該幾何體是由棱長為2 cm的正方體與底面為邊長為2 cm正方形、高為2 cm的四棱錐組成,VV正方體V四棱錐8 cm3 cm3 cm3.課后作業(yè)一、    選擇題1(2015陜西文)一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為____________答案 4解析 由三視圖可知原幾何體為半圓柱,底面半徑為1,高為2,則表面積為:S2×π×12××1×22×2π44.2(2015福建文)某幾何體的三視圖如圖所示,則該幾何體的表面積等于______________答案 112解析 由三視圖知,該幾何體是一個(gè)直四棱柱,上、下底面為直角梯形,如圖所示.直角梯形斜腰長為,所以底面周長為4,側(cè)面積為2×(4)82,兩底面的面積和為2××1×(12)3,所以該幾何體的表面積為823112.3(2015山東文)已知等腰直角三角形的直角邊的長為2,將該三角形繞其斜邊所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______答案 解析 如圖,設(shè)等腰直角三角形為ABC,C90°,ACCB2,則AB2.設(shè)DAB中點(diǎn),則BDADCD.所圍成的幾何體為兩個(gè)圓錐的組合體,其體積V2××π×()2×.4若某幾何體的三視圖如圖所示,其中俯視圖是個(gè)半圓,則該幾何體的表面積為___________答案 π解析 由三視圖可知該幾何體為一個(gè)半圓錐,即由一個(gè)圓錐沿中軸線切去一半而得.S×2××π××1π.5若一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為___________答案 754解析 由三視圖可知該幾何體是一個(gè)四棱柱.兩個(gè)底面面積之和為2××327,四個(gè)側(cè)面的面積之和是(345)×4484,故表面積是754.6.已知某幾何體的三視圖如圖所示,則該幾何體的體積為______答案 解析 方法一:由三視圖畫出幾何體,如圖所示,該幾何體的體積Vπ3π.方法二:V·π·12·(24)3π.7.一個(gè)空間幾何體的正視圖和側(cè)視圖都是邊長為1的正方形,俯視圖是一個(gè)直徑為1的圓,那么這個(gè)幾何體的全面積為______答案  π解析  由題意可得,該幾何體是一個(gè)底面半徑為,高為1的圓柱,其全面積S×2××1π.8一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為______答案  12解析  由三視圖可知,該幾何體是一個(gè)如圖所示的四棱錐PABCD,其中,底面ABCD為矩形,AB3,BC4,PAABCD,PA3,VPABCDSABCD·PA×3×4×312.9(2015天津文)一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為________m3.答案 π解析 由所給三視圖可知,該幾何體是由相同底面的兩圓錐和一圓柱組成,底面半徑為1 m,圓錐的高為1 m,圓柱的高為2 m,因此該幾何體的體積V2××π×12×1π×12×2π m3.10.某幾何體的三視圖如圖所示,則其表面積為______答案  解析  由三視圖可知,該幾何體是一個(gè)半徑為1的半球,SR2πR2R23π.11.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為________m3.答案  解析  根據(jù)三視圖知,該幾何體上部是一個(gè)底面直徑為4,高為2的圓錐,下部是一個(gè)底面直徑為2,高為4的圓柱.故該幾何體的體積Vπ×22×2π×12×4 (m2).二、解答題12 (2015湖南文)如圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E,F分別是BCCC1的中點(diǎn).(1)證明:平面AEF平面B1BCC1;(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.解析  (1)證明 ∵△ABC為正三角形,EBC中點(diǎn),AEBCB1B平面ABC,AE?平面ABC,B1BAE,B1BBCB知,AE平面B1BCC1,又由AE?平面AEF,平面AEF平面B1BCC1.(2)解 設(shè)AB中點(diǎn)為M,連接CM,則CMAB,由平面A1ABB1平面ABC且平面A1ABB1平面ABCAB知,CMA1ABB1,∴∠CA1M即為直線A1C與平面A1ABB1所成的角.∴∠CA1M45°,易知CM×2在等腰RtCMA中,AMCMRtA1AM中,A1A.FCA1ASAEC××4,V三棱錐FAEC××.13(2015新課標(biāo))如圖,四邊形ABCD為菱形,GACBD的交點(diǎn),BE平面ABCD.(1)證明:平面AEC平面BED;(2)ABC120°,AEEC,三棱錐EACD的體積為,求該三棱錐的側(cè)面積.解析  (1)證明 因?yàn)樗倪呅?/span>ABCD為菱形,所以ACBD.因?yàn)?/span>BE平面ABCD,所以ACBE.AC平面BED.AC?平面AEC,所以平面AEC平面BED.(2)解 設(shè)ABx,在菱形ABCD中,由ABC120°,可得AGGCx,GBGD.因?yàn)?/span>AEEC,所以在Rt AEC中,可得EGx.BE平面ABCD,知EBG為直角三角形,可得BEx.由已知得,三棱錐EACD的體積VEACD×AC·GD·BEx3.x2.從而可得AEECED.所以EAC的面積為3EAD的面積與ECD的面積均為.故三棱錐EACD的側(cè)面積為32.

相關(guān)試卷

(藝術(shù)生)高考數(shù)學(xué)一輪復(fù)習(xí)講與練:考點(diǎn)48 事件與概率 (含解析):

這是一份(藝術(shù)生)高考數(shù)學(xué)一輪復(fù)習(xí)講與練:考點(diǎn)48 事件與概率 (含解析),共10頁。試卷主要包含了隨機(jī)事件和確定事件,頻率與概率,事件的關(guān)系與運(yùn)算,概率的幾個(gè)基本性質(zhì),互斥事件與對立事件的區(qū)別與聯(lián)系等內(nèi)容,歡迎下載使用。

(藝術(shù)生)高考數(shù)學(xué)一輪復(fù)習(xí)講與練:考點(diǎn)43 雙曲線 (含解析):

這是一份(藝術(shù)生)高考數(shù)學(xué)一輪復(fù)習(xí)講與練:考點(diǎn)43 雙曲線 (含解析),共8頁。試卷主要包含了雙曲線的概念,雙曲線的標(biāo)準(zhǔn)方程和幾何性質(zhì),雙曲線與橢圓的區(qū)別,過雙曲線C,已知M是雙曲線C,設(shè)F是雙曲線C等內(nèi)容,歡迎下載使用。

(藝術(shù)生)高考數(shù)學(xué)一輪復(fù)習(xí)講與練:考點(diǎn)42 橢圓 (含解析):

這是一份(藝術(shù)生)高考數(shù)學(xué)一輪復(fù)習(xí)講與練:考點(diǎn)42 橢圓 (含解析),共10頁。試卷主要包含了橢圓的概念,橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì),點(diǎn)P和橢圓的關(guān)系,橢圓中的弦長公式,橢圓中點(diǎn)弦有關(guān)的結(jié)論,設(shè)F1,F(xiàn)2分別是橢圓C,已知橢圓E等內(nèi)容,歡迎下載使用。

英語朗讀寶
資料下載及使用幫助
版權(quán)申訴
  • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請聯(lián)系客服,如若屬實(shí),我們會(huì)補(bǔ)償您的損失
  • 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時(shí)請及時(shí)更新
  • 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識(shí)產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎(jiǎng)勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
  • 精品推薦
  • 所屬專輯57份
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號(hào)注冊
手機(jī)號(hào)碼

手機(jī)號(hào)格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號(hào)

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號(hào)注冊
微信注冊

注冊成功

  • 0

    資料籃

  • 在線客服

    官方
    微信

    添加在線客服

    獲取1對1服務(wù)

  • 官方微信

    官方
    微信

    關(guān)注“教習(xí)網(wǎng)”公眾號(hào)

    打開微信就能找資料

  • 免費(fèi)福利

    免費(fèi)福利

返回
頂部