專題3-4 導數(shù)技巧:多元變量(多參) 目錄 TOC \o "1-3" \h \u  HYPERLINK \l "_Toc3202"  HYPERLINK \l "_Toc27840" 【題型一】多元(多參):放縮型  PAGEREF _Toc27840 1  HYPERLINK \l "_Toc303" 【題型二】多元(多參):方程與函數(shù)  PAGEREF _Toc303 2  HYPERLINK \l "_Toc25278" 【題型三】多元(多參:極值點偏移型  PAGEREF _Toc25278 3  HYPERLINK \l "_Toc5485" 【題型四】多元(多參):零點多項式 3  HYPERLINK \l "_Toc7037" 【題型五】多元(多參):凸凹翻轉(zhuǎn)型 4  HYPERLINK \l "_Toc611" 【題型六】多元(多參):討論最值型  PAGEREF _Toc611 5  HYPERLINK \l "_Toc10273" 【題型七】多元(多參):換元型(比值換元) 5  HYPERLINK \l "_Toc5768" 【題型八】多元(多參):切線放縮  PAGEREF _Toc5768 6  HYPERLINK \l "_Toc8089" 【題型九】多元(多參):絕對值型max{min}或min{max}  PAGEREF _Toc8089 7  HYPERLINK \l "_Toc28162" 二、真題再現(xiàn)  PAGEREF _Toc28162 7  HYPERLINK \l "_Toc21158" 三、模擬檢測  PAGEREF _Toc21158 8 【題型一】多元(多參):放縮型 【典例分析】 (2022·全國·高三專題練習)設(shè),,若關(guān)于的不等式在上恒成立,則的最小值是(???????) A. B. C. D. 【變式演練】 1.(2022·全國·高三專題練習)已知函數(shù),若時,恒有,則的最大值為 A. B. C. D. 2.(2022·全國·高三專題練習)已知函數(shù).若不等式對恒成立,則的最小值是(?????????????) A. B. C. D. 3.(2019?湖北模擬)已知不等式x?3lnx+1≥mlnx+n(m,n∈R,且m≠?3)對任意實數(shù)x恒成立,則的最大值為 A、?2ln2 B、?ln2 C、1?ln2 D、2?ln2 【題型二】多元(多參):方程與函數(shù) 【典例分析】 (2022·全國·高三專題練習)已知a,b分別滿足,,則ab=______. 【變式演練】 1.若關(guān)于的不等式在上恒成立,則的最大值為__________. 2.(2022·湖北·孝昌縣第一高級中學三模)若對于任意的x,.不等式恒成立,則b的取值范圍為______. 3.(2022·天津津衡高級中學有限公司高三階段練習)已知函數(shù)的定義域為,若時,取得最小值,則的取值范圍是___________. 【題型三】多元(多參:極值點偏移型 【典例分析】 (2022·全國·高三專題練習)已知方程有兩個不同的實數(shù)根,(),則下列不等式不成立的是(???????) A. B. C. D. 【變式演練】 1.(2019·遼寧·高三期中(文))已知函數(shù)有兩個零點、,,則下面說法不正確的是(????? ) A. B. C. D.有極小值點,且 2.(2022·全國·高三專題練習)已知,若,且,則與2的關(guān)系為 A. B. C. D.大小不確定 3.(2022·全國·高三專題練習)若有兩個不同零點,且,則的取值范圍是___________.(其中) 【題型四】多元(多參):零點多項式 【典例分析】 (2021·全國·模擬預測)已知函數(shù),,若方程有4個不同的實根,,,,則的取值范圍是______. 【變式演練】 1.(2021·全國·高三專題練習(文))已知,,若函數(shù)(為實數(shù))有兩個不同的零點,,且,則的最小值為___________. 2.(2021·江蘇·高三開學考試)已知函數(shù),,若,,則的最小值為___________. 3.(2022·浙江·高三專題練習)設(shè)函數(shù)已知,且,若的最小值為,則a的值為___________. 【題型五】多元(多參):凸凹翻轉(zhuǎn)型 【典例分析】 (2023·江蘇·南京市中華中學高三階段練習)已知實數(shù),滿足,則的值為 A. B. C. D. 【變式演練】 1.已知函數(shù)有兩個零點,則的取值范圍為( ) A. B. C. D. 安徽省六安市第一中學、合肥八中、阜陽一中三校2019-2020學年高三上學期10月聯(lián)考數(shù)學(文)試題 2.已知實數(shù),滿足,則的值為 A. B. C. D. 3.已知大于1的正數(shù),滿足,則正整數(shù)的最大值為( ) A.7 B.8 C.9 D.11 【題型六】多元(多參):討論最值型 【典例分析】 (2021·浙江·麗水外國語實驗學校高三期末)已知,,滿足對任意恒成立,當取到最小值時,______. 【變式演練】 1.(2020·安徽省渦陽第一中學高三階段練習(文))已知函數(shù),若存在實數(shù)使得的解集恰為,則的取值范圍是_____. 2.(2021·四川省高縣中學校高三階段練習(文))若不等式對一切恒成立,其中為自然對數(shù)的底數(shù),則的取值范圍是________. 3.設(shè)a,b是正實數(shù),函數(shù),.若存在,使成立,則的取值范圍為_________. 浙江省金華市浙江師大附屬東陽花園外國語學校2020-2021學年高三上學期期中數(shù)學試題 【題型七】多元(多參):換元型(比值換元) 【典例分析】 已知函數(shù)有兩個不同的零點為,,若恒成立,則實數(shù)的最大值為______. 【變式演練】 1.(2022·全國·高三專題練習)已知存在,若要使等式成立(e=2.71828…),則實數(shù)的可能的取值是(???????) A. B. C. D.0 2.(2023·全國·高三專題練習)已知函數(shù),當,恒成立,則的最大值為___________. 3.(2022·全國·高三專題練習)已知,,,則的最小值是______. 【題型八】多元(多參):切線放縮 【典例分析】 (2022·全國·高三專題練習)已知,若關(guān)于的不等式恒成立,則的最大值為_______. 【變式演練】 1.(2020·四川·二模(理))若關(guān)于x的不等式恒成立,則的最大值是________________. 2.(018·江蘇南京·高三期中)存在使對任意的恒成立,則的最小值為________. 3.(2020·全國·高三專題練習(文))若關(guān)于的不等式恒成立,則的最小值是_____. 【題型九】多元(多參):絕對值型max{min}或min{max} 【典例分析】 (2020·浙江杭州·三模)已知函數(shù).當,的最大值為,則的最小值為______ 【變式演練】 1.(2020·江蘇·揚州中學高三階段練習)設(shè)函數(shù),,其中.若恒成立,則當取得最小值時,的值為________. 2.(2018·浙江·高三階段練習)設(shè)函數(shù),若對任意的實數(shù)和實數(shù),總存在,使得,則實數(shù)的最大值是________. 3.(2022·全國·高三專題練習)已知函數(shù),,記為的最大值,則的最小值為__________. 1.(全國·高考真題(文))已知函數(shù)f(x)=,下列結(jié)論中錯誤的是 A., f()=0 B.函數(shù)y=f(x)的圖像是中心對稱圖形 C.若是f(x)的極小值點,則f(x)在區(qū)間(-∞, )單調(diào)遞減 D.若是f(x)的極值點,則 ()=0 2.(2021·全國·高考真題(理))設(shè),若為函數(shù)的極大值點,則(???????) A. B. C. D. 3.(安徽·高考真題(文))函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖所示,則下列結(jié)論成立的是(???????) A.a(chǎn)>0,b<0,c>0,d>0 B.a(chǎn)>0,b<0,c<0,d>0 C.a(chǎn)<0,b<0,c<0,d>0 D.a(chǎn)>0,b>0,c>0,d<0 4.(福建·高考真題(文))若a>0,b>0,且函數(shù)f(x)=4x3﹣ax2﹣2bx+2在x=1處有極值,則ab的最大值等于 A.2 B.3 C.6 D.9 5.(天津·高考真題(文))設(shè)函數(shù),若實數(shù)滿足,則 A. B. C. D. 6.(安徽·高考真題(理))函數(shù)在區(qū)間〔0,1〕上的圖像如圖所示,則m,n的值可能是 A. B. C. D. 7.(2022·全國·高考真題(理))當時,函數(shù)取得最大值,則(???????) A. B. C. D.1 1.(2020·浙江·臺州市新橋中學高三階段練習)已知不等式恒成立,則的最小值為______. 2.(2022·全國·高三專題練習)已知,(為常數(shù)),的最大值為,則_______. 3.已知函數(shù),若且,關(guān)于下列命題:正確的個數(shù)為 A.1個 B.2個 C.3個 D.4個 黑龍江省大慶市大慶實驗中學2018屆高三上學期期初考試數(shù)學(文)試題 4.(2021·河北·衡水市冀州區(qū)滏運中學高三期末)函數(shù),若存在a,b,c(),使得,則的最小值是________. 5.(2022·全國·高三專題練習)若是實數(shù),是自然對數(shù)的底數(shù),,則______. 6.已知、,且,對任意均有,則( ) A., B., C., D., 7.(2022·全國·高三專題練習)已知存在,若要使等式成立(e=2.71828…),則實數(shù)的可能的取值是(???????) A. B. C. D.0 8.(2020·江西·鷹潭一中高三階段練習(理))對任意,都存在,使得,其中為自然對數(shù)的底數(shù),則實數(shù)的取值范圍是______ 9.【2019福建三明上學期期末考】若不等式對任意恒成立,則實數(shù)的值為( ) A.1 B.2 C.3 D.4 【提分秘籍】 基本規(guī)律 本題型最早源于新課標2012年導數(shù)壓軸大題,處理有兩個關(guān)鍵步驟 1.含參式子求最值 2.二次構(gòu)造時,不完全是“恒成立”型,而是“存在型” 【提分秘籍】 基本規(guī)律 利用方程或者不等式,進行“二次構(gòu)造”求導求最值【提分秘籍】 基本規(guī)律 1.極值點偏移小題是屬于“大題”題型。 2.如果只是做小題,可以考慮畫出草圖,粗略的可以判斷真假. 一般思路 1.求出函數(shù)的極值點; 2.構(gòu)造一元差函數(shù); 3.確定函數(shù)的單調(diào)性; 4.結(jié)合,判斷的符號,從而確定、的大小關(guān)系 【提分秘籍】 基本規(guī)律 數(shù)形結(jié)合,利用導數(shù)畫圖時,要注意水平漸線與豎直漸近線【提分秘籍】 基本規(guī)律 凸凹翻轉(zhuǎn)型常見思路,如下圖 轉(zhuǎn)化為兩個函數(shù)的最值問題是關(guān)鍵,是難題 【提分秘籍】 基本規(guī)律 較復雜的分類討論【提分秘籍】 基本規(guī)律 1.主要是比值代換。 2.整體代換。 【提分秘籍】 基本規(guī)律 一般能切線放縮的,多是簡單的凸函數(shù)或者凹函數(shù)

相關(guān)試卷

專題3-4 超難壓軸小題:導數(shù)和函數(shù)歸類(1)-2022年高考數(shù)學畢業(yè)班二輪熱點題型歸納與變式演練(全國通用)(解析版):

這是一份專題3-4 超難壓軸小題:導數(shù)和函數(shù)歸類(1)-2022年高考數(shù)學畢業(yè)班二輪熱點題型歸納與變式演練(全國通用)(解析版),共45頁。

專題3-4 超難壓軸小題:導數(shù)和函數(shù)歸類(1)-2022年高考數(shù)學畢業(yè)班二輪熱點題型歸納與變式演練(全國通用)(原卷版):

這是一份專題3-4 超難壓軸小題:導數(shù)和函數(shù)歸類(1)-2022年高考數(shù)學畢業(yè)班二輪熱點題型歸納與變式演練(全國通用)(原卷版),共11頁。試卷主要包含了熱點題型歸納1,最新模考題組練9等內(nèi)容,歡迎下載使用。

專題3-4 壓軸小題導數(shù)技巧:多元變量(多參)-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用):

這是一份專題3-4 壓軸小題導數(shù)技巧:多元變量(多參)-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用),文件包含專題3-4壓軸小題導數(shù)技巧多元變量多參-高考數(shù)學一輪復習熱點題型歸納與變式演練全國通用解析版docx、專題3-4壓軸小題導數(shù)技巧多元變量多參-高考數(shù)學一輪復習熱點題型歸納與變式演練全國通用原卷版docx等2份試卷配套教學資源,其中試卷共44頁, 歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

專題3-2 壓軸小題導數(shù)技巧:求參-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

專題3-2 壓軸小題導數(shù)技巧:求參-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

專題3-5 壓軸小題導數(shù)技巧:比大小-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

專題3-5 壓軸小題導數(shù)技巧:比大小-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

專題3-3 壓軸小題導數(shù)技巧:構(gòu)造函數(shù)-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

專題3-3 壓軸小題導數(shù)技巧:構(gòu)造函數(shù)-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

專題3-2 壓軸小題導數(shù)技巧:求參-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

專題3-2 壓軸小題導數(shù)技巧:求參-高考數(shù)學一輪復習熱點題型歸納與變式演練(全國通用)

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護您的合法權(quán)益。
入駐教習網(wǎng),可獲得資源免費推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機號注冊
手機號碼

手機號格式錯誤

手機驗證碼 獲取驗證碼

手機驗證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機號注冊
微信注冊

注冊成功

返回
頂部