? [基礎(chǔ)題組練]
1.“k0,
所以-m20)的左焦點(diǎn)F(-c,0)作圓O:x2+y2=a2的切線,切點(diǎn)為E,延長FE交雙曲線于點(diǎn)P,若E為線段FP的中點(diǎn),則雙曲線的離心率為(  )
A. B.
C.+1 D.
解析:選A.法一:如圖所示,不妨設(shè)E在x軸上方,F(xiàn)′為雙曲線的右焦點(diǎn),連接OE,PF′,
因?yàn)镻F是圓O的切線,所以O(shè)E⊥PE,又E,O分別為PF,F(xiàn)F′的中點(diǎn),所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據(jù)雙曲線的性質(zhì),|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A.
法二:連接OE,因?yàn)閨OF|=c,|OE|=a,OE⊥EF,所以|EF|=b,設(shè)F′為雙曲線的右焦點(diǎn),連接PF′,因?yàn)镺,E分別為線段FF′,F(xiàn)P的中點(diǎn),所以|PF|=2b,|PF′|=2a,所以|PF|-|PF′|=2a,所以b=2a,所以e==.
6.(2018·高考全國卷Ⅰ)已知雙曲線C:-y2=1,O為坐標(biāo)原點(diǎn),F(xiàn)為C的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M,N.若△OMN為直角三角形,則|MN|=(  )
A. B.3
C.2 D.4
解析:選B.因?yàn)殡p曲線-y2=1的漸近線方程為y=±x,所以∠MON=60°.不妨設(shè)過點(diǎn)F的直線與直線y=x交于點(diǎn)M,由△OMN為直角三角形,不妨設(shè)∠OMN=90°,則∠MFO=60°,又直線MN過點(diǎn)F(2,0),所以直線MN的方程為y=-(x-2),
由得所以M,所以|OM|==,所以|MN|=|OM|=3,故選B.
7.(2019·遼寧五校協(xié)作體聯(lián)合模擬)在平面直角坐標(biāo)系xOy中,已知雙曲線C:-=1(a>0,b>0)的離心率為,從雙曲線C的右焦點(diǎn)F引漸近線的垂線,垂足為A,若△AFO的面積為1,則雙曲線C的方程為(  )
A.-=1 B.-y2=1
C.-=1 D.x2-=1
解析:選D.因?yàn)殡p曲線C的右焦點(diǎn)F到漸近線的距離|FA|=b,|OA|=a,所以ab=2,又雙曲線C的離心率為,所以 =,即b2=4a2,解得a2=1,b2=4,所以雙曲線C的方程為x2-=1,故選D.
8.(2019·河北邯鄲聯(lián)考)如圖,F(xiàn)1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的左、右兩個焦點(diǎn),若直線y=x與雙曲線C交于P,Q兩點(diǎn),且四邊形PF1QF2為矩形,則雙曲線的離心率為(  )

A.2+ B.
C.2+ D.
解析:選D.由題意可得,矩形的對角線長相等,將直線y=x代入雙曲線C方程,可得x=±,所以·=c,所以2a2b2=c2(b2-a2),即2(e2-1)=e4-2e2,所以e4-4e2+2=0.因?yàn)閑>1,所以e2=2+,所以e=,故選D.
9.(2019·貴陽模擬)過雙曲線C:-=1(a>0,b>0)的右焦點(diǎn)F作圓x2+y2=a2的切線FM(切點(diǎn)為M),交y軸于點(diǎn)P,若=2,則雙曲線的離心率為(  )
A. B.
C. D.2
解析:選B.設(shè)P(0,3m),由=2,可得點(diǎn)M的坐標(biāo)為,因?yàn)镺M⊥PF,所以·=-1,所以m2=c2,所以M,由|OM|2+|MF|2=|OF|2,|OM|=a,|OF|=c得,a2++=c2,a2=c2,所以e==,故選B.
10.(2019·石家莊模擬)雙曲線-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1作傾斜角為30°的直線,與y軸和雙曲線的右支分別交于A,B兩點(diǎn),若點(diǎn)A平分線段F1B,則該雙曲線的離心率是(  )
A. B.
C.2 D.
解析:選A.由題意可知F1(-c,0),設(shè)A(0,y0),因?yàn)锳是F1B的中點(diǎn),所以點(diǎn)B的橫坐標(biāo)為c,又點(diǎn)B在雙曲線的右支上,所以B,因?yàn)橹本€F1B的傾斜角為30°,所以=,化簡整理得=,又b2=c2-a2,所以3c2-3a2-2ac=0,兩邊同時(shí)除以a2得3e2-2e-3=0,解得e=或e=-(舍去),故選A.
11.已知M(x0,y0)是雙曲線C:-y2=1上的一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線C的兩個焦點(diǎn).若·0)上,PF⊥x軸(其中F為雙曲線的右焦點(diǎn)),點(diǎn)P到該雙曲線的兩條漸近線的距離之比為,則該雙曲線的離心率為________.
解析:由題意知F(c,0),由PF⊥x軸,不妨設(shè)點(diǎn)P在第一象限,則P,雙曲線漸近線的方程為bx±ay=0,由題意,得=,解得c=2b,又c2=a2+b2,所以a=b,所以雙曲線的離心率e===.
答案:
16.(2019·長春監(jiān)測)已知O為坐標(biāo)原點(diǎn),設(shè)F1,F(xiàn)2分別是雙曲線x2-y2=1的左、右焦點(diǎn),P為雙曲線左支上任一點(diǎn),過點(diǎn)F1作∠F1PF2的平分線的垂線,垂足為H,則|OH|=________.
解析:如圖所示,延長F1H交PF2于點(diǎn)Q,由PH為∠F1PF2的平分線及PH⊥F1Q,可知|PF1|=|PQ|,根據(jù)雙曲線的定義,得|PF2|-|PF1|=2,從而|QF2|=2,在△F1QF2中,易知OH為中位線,故|OH|=1.

答案:1
[綜合題組練]
1.(一題多解)已知雙曲線C:-=1 (a>0,b>0)的一條漸近線方程為y=x,且與橢圓+=1有公共焦點(diǎn),則C的方程為(  )
A.-=1       B.-=1
C.-=1 D.-=1
解析:選B.法一:由雙曲線的漸近線方程可設(shè)雙曲線方程為-=k(k>0),即-=1,因?yàn)殡p曲線與橢圓+=1有公共焦點(diǎn),所以4k+5k=12-3,解得k=1,故雙曲線C的方程為-=1.故選B.
法二:因?yàn)闄E圓+=1的焦點(diǎn)為(±3,0),雙曲線與橢圓+=1有公共焦點(diǎn),所以a2+b2=(±3)2=9①,因?yàn)殡p曲線的一條漸近線為y=x,所以=②,聯(lián)立①②可解得a2=4,b2=5.所以雙曲線C的方程為-=1.
2.(2019·鄭州模擬)已知雙曲線C:-=1(a>b>0)的兩條漸近線與圓O:x2+y2=5交于M,N,P,Q四點(diǎn),若四邊形MNPQ的面積為8,則雙曲線C的漸近線方程為(  )
A.y=±x B.y=±x
C.y=±x D.y=±x
解析:選B.以原點(diǎn)為圓心,半徑長為的圓的方程為x2+y2=5,雙曲線的兩條漸近線方程為y=±x,不妨設(shè)M,
因?yàn)樗倪呅蜯NPQ的面積為8,所以4x·x=8,
所以x2=2,
將M代入x2+y2=5,可得x2+x2=5,
所以+=5,a>b>0,
解得=,故選B.
3.(2019·石家莊模擬)以橢圓+=1的頂點(diǎn)為焦點(diǎn),焦點(diǎn)為頂點(diǎn)的雙曲線C,其左、右焦點(diǎn)分別是F1,F(xiàn)2.已知點(diǎn)M的坐標(biāo)為(2,1),雙曲線C上的點(diǎn)P(x0,y0)(x0>0,y0>0)滿足=,則S△PMF1-S△PMF2=(  )
A.2 B.4
C.1 D.-1
解析:選A.由題意,知雙曲線方程為-=1,|PF1|-|PF2|=4,由=,可得=,即F1M平分∠PF1F2.
又結(jié)合平面幾何知識可得,△F1PF2的內(nèi)心在直線x=2上,所以點(diǎn)M(2,1)就是△F1PF2的內(nèi)心.
故S△PMF1-S△PMF2=×(|PF1|-|PF2|)×1=×4×1=2.
4.(2019·高考全國卷Ⅰ)已知雙曲線C:-=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與C的兩條漸近線分別交于A,B兩點(diǎn),若=,·=0,則C的離心率為________.
解析:通解:因?yàn)椤ぃ?,所以F1B⊥F2B,如圖.

所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因?yàn)椋?,所以點(diǎn)A為F1B的中點(diǎn),又點(diǎn)O為F1F2的中點(diǎn),所以O(shè)A∥BF2,所以F1B⊥OA,因?yàn)橹本€OA,OB為雙曲線C的兩條漸近線,所以tan ∠BF1O=,tan ∠BOF2=.因?yàn)閠an ∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以雙曲線的離心率e==2.
優(yōu)解:因?yàn)椤ぃ?,所以F1B⊥F2B,在Rt△F1BF2 中,|OB|=|OF2|,所以∠OBF2=∠OF2B,又=,所以A為F1B的中點(diǎn),所以O(shè)A∥F2B,所以∠F1OA=∠OF2B.又∠F1OA=∠BOF2,所以△OBF2為等邊三角形.由F2(c,0)可得B,因?yàn)辄c(diǎn)B在直線y=x上,所以c=·,所以=,所以e==2.
答案:2
5.設(shè)雙曲線-=1的兩個焦點(diǎn)分別為F1,F(xiàn)2,離心率為2.
(1)若A,B分別為此雙曲線的漸近線l1,l2上的動點(diǎn),且2|AB|=5|F1F2|,求線段AB的中點(diǎn)M的軌跡方程,并說明軌跡是什么曲線;
(2)過點(diǎn)N(1,0)能否作出直線l,使l交雙曲線于P,Q兩點(diǎn),且·=0,若存在,求出直線l的方程;若不存在,說明理由.
解:(1)因?yàn)閑=2,所以c2=4a2,
因?yàn)閏2=a2+3,所以a=1,c=2,
所以雙曲線方程為y2-=1,漸近線方程為y=±x;
設(shè)A(x1,y1),B(x2,y2),AB的中點(diǎn)M(x,y),
因?yàn)?|AB|=5|F1F2|,
所以|AB|=|F1F2|=10,
所以=10,
因?yàn)閥1=x1,y2=-x2,2x=x1+x2,2y=y(tǒng)1+y2,
所以y1+y2=(x1-x2),y1-y2=(x1+x2),
所以=10,
所以3(2y)2+(2x)2=100,
即+=1,
則M的軌跡是中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長為10,短軸長為的橢圓.
(2)假設(shè)存在滿足條件的直線l.
設(shè)l:y=k(x-1),l與雙曲線交于P(x1,y1),Q(x2,y2),
因?yàn)椤ぃ?,
所以x1x2+y1y2=0,
所以x1x2+k2(x1-1)(x2-1)=0,
所以x1x2+k2[x1x2-(x1+x2)+1]=0,①
因?yàn)?,可?3k2-1)x2-6k2x+3k2-3=0,
所以x1+x2=,x1x2=,②
將②代入①得k2+3=0,
所以k不存在,所以假設(shè)不成立,即不存在滿足條件的直線l.


相關(guān)試卷

高中數(shù)學(xué)高考8 第7講 拋物線 新題培優(yōu)練:

這是一份高中數(shù)學(xué)高考8 第7講 拋物線 新題培優(yōu)練,共8頁。試卷主要包含了過拋物線C,已知直線y=k與拋物線C,拋物線C,設(shè)拋物線C,已知點(diǎn)M和拋物線C等內(nèi)容,歡迎下載使用。

高中數(shù)學(xué)高考7 第7講 立體幾何中的向量方法 新題培優(yōu)練:

這是一份高中數(shù)學(xué)高考7 第7講 立體幾何中的向量方法 新題培優(yōu)練,共11頁。試卷主要包含了))等內(nèi)容,歡迎下載使用。

高中數(shù)學(xué)高考7 第7講 函數(shù)的圖象 新題培優(yōu)練:

這是一份高中數(shù)學(xué)高考7 第7講 函數(shù)的圖象 新題培優(yōu)練,共7頁。試卷主要包含了故選B.等內(nèi)容,歡迎下載使用。

英語朗讀寶

相關(guān)試卷 更多

高中數(shù)學(xué)高考7 第7講 二項(xiàng)分布及其應(yīng)用 新題培優(yōu)練

高中數(shù)學(xué)高考7 第7講 二項(xiàng)分布及其應(yīng)用 新題培優(yōu)練

高中數(shù)學(xué)高考7 第7講 定積分與微積分基本定理   新題培優(yōu)練

高中數(shù)學(xué)高考7 第7講 定積分與微積分基本定理 新題培優(yōu)練

高中數(shù)學(xué)高考7 第6講 正弦定理和余弦定理 新題培優(yōu)練

高中數(shù)學(xué)高考7 第6講 正弦定理和余弦定理 新題培優(yōu)練

高中數(shù)學(xué)高考6 第6講 對數(shù)與對數(shù)函數(shù) 新題培優(yōu)練

高中數(shù)學(xué)高考6 第6講 對數(shù)與對數(shù)函數(shù) 新題培優(yōu)練

資料下載及使用幫助
版權(quán)申訴
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎勵,申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

返回
頂部