高考大題專項(xiàng)練六 高考中的概率、統(tǒng)計(jì)與統(tǒng)計(jì)案例1.某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由.(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)m,并將完成生產(chǎn)任務(wù)所需時(shí)間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:生產(chǎn)方式是否超過m總計(jì)超過m不超過m第一種生產(chǎn)方式   第二種生產(chǎn)方式   總計(jì)  40(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?附:K2=,P(K2k0)0.0500.0100.001k03.8416.63510.828:(1)第二種生產(chǎn)方式的效率更高.理由如下:由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時(shí)間至少80分鐘,用第二種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時(shí)間至多79分鐘.因此第二種生產(chǎn)方式的效率更高.由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高.由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間低于80分鐘.因此第二種生產(chǎn)方式的效率更高.由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖8上的最多,關(guān)于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖7上的最多,關(guān)于莖7大致呈對稱分布.又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布的區(qū)間相同,故可以認(rèn)為用第二種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間比用第一種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間更少.因此第二種生產(chǎn)方式的效率更高.以上給出了4種理由,考生答出其中任意一種或其他合理理由均可.(2)由莖葉圖知m==80.列聯(lián)表如下:生產(chǎn)方式是否超過m總計(jì)超過m不超過m第一種生產(chǎn)方式15520第二種生產(chǎn)方式51520總計(jì)202040(3)因?yàn)?/span>K2==10>6.635,所以有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異.2.(2020山東,19)為加強(qiáng)環(huán)境保護(hù),治理空氣污染,環(huán)境監(jiān)測部門對某市空氣質(zhì)量進(jìn)行調(diào)研,隨機(jī)抽查了100天空氣中的PM2.5和SO2濃度(單位:μg/m3),得下表:PM2.5SO2[0,50](50,150](150,475][0,35]32184(35,75]6812(75,115]3710(1)估計(jì)事件該市一天空氣中PM2.5濃度不超過75,且SO2濃度不超過150的概率;(2)根據(jù)所給數(shù)據(jù),完成下面的2×2列聯(lián)表:PM2.5SO2[0,150](150,475][0,75]  (75,115]  (3)根據(jù)(2)中的列聯(lián)表,判斷是否有99%的把握認(rèn)為該市一天空氣中PM2.5濃度與SO2濃度有關(guān)?附:K2=,P(K2k0)0.0500.0100.001k03.8416.63510.828:(1)根據(jù)抽查數(shù)據(jù),該市100天空氣中PM2.5濃度不超過75,且SO2濃度不超過150的天數(shù)為32+18+6+8=64,因此,該市一天空氣中PM2.5濃度不超過75,且SO2濃度不超過150的概率的估計(jì)值為=0.64.(2)根據(jù)抽查數(shù)據(jù),可得2×2列聯(lián)表:PM2.5SO2[0,150](150,475][0,75]6416(75,115]1010(3)根據(jù)(2)的列聯(lián)表得K2的觀測值k=7.484.由于7.484>6.635,故有99%的把握認(rèn)為該市一天空氣中PM2.5濃度與SO2濃度有關(guān).3.11分制乒乓球比賽,每贏一球得1分.當(dāng)某局打成1010平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩名同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方1010平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.(1)求P(X=2);(2)求事件X=4且甲獲勝的概率.答案:(1)證明X=2就是1010平后,兩人又打了兩個(gè)球該局比賽結(jié)束,則這兩個(gè)球均由甲得分或者均由乙得分.因此P(X=2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)解事件X=4且甲獲勝,就是1010平后,兩人又打了4個(gè)球該局比賽結(jié)束,且這4個(gè)球的得分情況為:前兩球是甲、乙各得1分,后兩球均為甲得分.因此所求概率為[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.4.某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品.檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對余下的所有產(chǎn)品作檢驗(yàn).設(shè)每件產(chǎn)品為不合格品的概率都為p(0<p<1),且各件產(chǎn)品是否為不合格品相互獨(dú)立.(1)記20件產(chǎn)品中恰有2件不合格品的概率為f(p),求f(p)的最大值點(diǎn)p0.(2)現(xiàn)對一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的p0作為p的值.已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對每件不合格品支付25元的賠償費(fèi)用.若不對該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為X,求E(X);以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對這箱余下的所有產(chǎn)品作檢驗(yàn)?:(1)20件產(chǎn)品中恰有2件不合格品的概率為f(p)=p2·(1-p)18.因此f'(p)=[2p(1-p)18-18p2(1-p)17]=2p(1-p)17(1-10p).f'(p)=0,得p=0.1.當(dāng)p(0,0.1)時(shí),f'(p)>0;當(dāng)p(0.1,1)時(shí),f'(p)<0.所以f(p)的最大值點(diǎn)為p0=0.1.(2)由(1)知,p=0.1.Y表示余下的180件產(chǎn)品中的不合格品件數(shù),依題意知Y~B(180,0.1),X=20×2+25Y,X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.如果對余下的產(chǎn)品作檢驗(yàn),則這一箱產(chǎn)品所需要的檢驗(yàn)費(fèi)為400元.由于E(X)>400,因此應(yīng)該對余下的產(chǎn)品作檢驗(yàn).5.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.(xi-)2(wi-)2(xi-)(yi-)(wi-)(yi-)46.65636.8289.81.61 469108.8表中wi=wi.(1)根據(jù)散點(diǎn)圖判斷,y=a+bxy=c+d哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)已知這種產(chǎn)品的年利潤zx,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題:當(dāng)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為.:(1)由散點(diǎn)圖可以判斷,y=c+d適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型.(2)令w=,先建立y關(guān)于w的線性回歸方程.因?yàn)?/span>=68,=563-68×6.8=100.6,所以y關(guān)于w的線性回歸方程為=100.6+68w,因此y關(guān)于x的回歸方程為=100.6+68.(3)由(2)知,當(dāng)x=49時(shí),年銷售量y的預(yù)報(bào)值=100.6+68=576.6,年利潤z的預(yù)報(bào)值=576.6×0.2-49=66.32.根據(jù)(2)的結(jié)果知,年利潤z的預(yù)報(bào)值=0.2(100.6+68)-x=-x+13.6+20.12.所以當(dāng)=6.8,x=46.24時(shí),取得最大值.故當(dāng)年宣傳費(fèi)為46.24千元時(shí),年利潤的預(yù)報(bào)值最大.6.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.試說明上述監(jiān)控生產(chǎn)過程方法的合理性;下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95經(jīng)計(jì)算得xi=9.97,s=0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除(-3+3)之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μσ(精確到0.01).附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),P(μ-3σ<Z<μ+3σ)0.997 3.0.997 3160.957 7,0.09.:(1)抽取的一個(gè)零件的尺寸在(μ-3σ,μ+3σ)之內(nèi)的概率為0.9973,從而零件的尺寸在(μ-3σ,μ+3σ)之外的概率為0.0027,X~B(16,0.0027).因此P(X≥1)=1-P(X=0)=1-0.9973160.0423.X的數(shù)學(xué)期望為E(X)=16×0.0027=0.0432.(2)如果生產(chǎn)狀態(tài)正常,一個(gè)零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0027,一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0423,發(fā)生的概率很小.因此一旦發(fā)生這種情況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.=9.97,s0.212,得μ的估計(jì)值為=9.97,σ的估計(jì)值為=0.212,由樣本數(shù)據(jù)可以看出有一個(gè)零件的尺寸在(-3+3)之外,因此需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查.剔除(-3+3)之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的平均數(shù)為(16×9.97-9.22)=10.02,因此μ的估計(jì)值為10.02.=16×0.2122+16×9.9721 591.134,剔除(-3+3)之外的數(shù)據(jù)9.22,剩下數(shù)據(jù)的樣本方差為(1 591.134-9.222-15×10.022)0.008,因此σ的估計(jì)值為0.09.

相關(guān)試卷

高考數(shù)學(xué)一輪復(fù)習(xí)高考大題專項(xiàng)練六高考中的概率統(tǒng)計(jì)與統(tǒng)計(jì)案例含解析新人教A版文:

這是一份高考數(shù)學(xué)一輪復(fù)習(xí)高考大題專項(xiàng)練六高考中的概率統(tǒng)計(jì)與統(tǒng)計(jì)案例含解析新人教A版文,共10頁。試卷主要包含了非選擇題等內(nèi)容,歡迎下載使用。

高考數(shù)學(xué)一輪復(fù)習(xí)高考大題專項(xiàng)練六高考中的概率與統(tǒng)計(jì)含解析新人教A版理:

這是一份高考數(shù)學(xué)一輪復(fù)習(xí)高考大題專項(xiàng)練六高考中的概率與統(tǒng)計(jì)含解析新人教A版理,共9頁。試卷主要包含了非選擇題等內(nèi)容,歡迎下載使用。

廣西專用高考數(shù)學(xué)一輪復(fù)習(xí)大題專項(xiàng)練6高考中的概率統(tǒng)計(jì)與統(tǒng)計(jì)案例含解析新人教A版理:

這是一份廣西專用高考數(shù)學(xué)一輪復(fù)習(xí)大題專項(xiàng)練6高考中的概率統(tǒng)計(jì)與統(tǒng)計(jì)案例含解析新人教A版理,共9頁。

英語朗讀寶
資料下載及使用幫助
版權(quán)申訴
  • 1.電子資料成功下載后不支持退換,如發(fā)現(xiàn)資料有內(nèi)容錯(cuò)誤問題請聯(lián)系客服,如若屬實(shí),我們會補(bǔ)償您的損失
  • 2.壓縮包下載后請先用軟件解壓,再使用對應(yīng)軟件打開;軟件版本較低時(shí)請及時(shí)更新
  • 3.資料下載成功后可在60天以內(nèi)免費(fèi)重復(fù)下載
版權(quán)申訴
若您為此資料的原創(chuàng)作者,認(rèn)為該資料內(nèi)容侵犯了您的知識產(chǎn)權(quán),請掃碼添加我們的相關(guān)工作人員,我們盡可能的保護(hù)您的合法權(quán)益。
入駐教習(xí)網(wǎng),可獲得資源免費(fèi)推廣曝光,還可獲得多重現(xiàn)金獎勵(lì),申請 精品資源制作, 工作室入駐。
版權(quán)申訴二維碼
高考專區(qū)
  • 精品推薦
  • 所屬專輯12份
歡迎來到教習(xí)網(wǎng)
  • 900萬優(yōu)選資源,讓備課更輕松
  • 600萬優(yōu)選試題,支持自由組卷
  • 高質(zhì)量可編輯,日均更新2000+
  • 百萬教師選擇,專業(yè)更值得信賴
微信掃碼注冊
qrcode
二維碼已過期
刷新

微信掃碼,快速注冊

手機(jī)號注冊
手機(jī)號碼

手機(jī)號格式錯(cuò)誤

手機(jī)驗(yàn)證碼 獲取驗(yàn)證碼

手機(jī)驗(yàn)證碼已經(jīng)成功發(fā)送,5分鐘內(nèi)有效

設(shè)置密碼

6-20個(gè)字符,數(shù)字、字母或符號

注冊即視為同意教習(xí)網(wǎng)「注冊協(xié)議」「隱私條款」
QQ注冊
手機(jī)號注冊
微信注冊

注冊成功

  • 0

    資料籃

  • 在線客服

    官方
    微信

    添加在線客服

    獲取1對1服務(wù)

  • 官方微信

    官方
    微信

    關(guān)注“教習(xí)網(wǎng)”公眾號

    打開微信就能找資料

  • 免費(fèi)福利

    免費(fèi)福利

返回
頂部