
?2021-2022中考數(shù)學(xué)模擬試卷
注意事項(xiàng)
1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.
2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.
3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.
4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.
5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1.如圖,在矩形ABCD中,AB=5,BC=7,點(diǎn)E為BC上一動(dòng)點(diǎn),把△ABE沿AE折疊,當(dāng)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在∠ADC的角平分線上時(shí),則點(diǎn)B′到BC的距離為( )
A.1或2 B.2或3 C.3或4 D.4或5
2.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是( ?。?br />
A.k>1 B.k<1 C.k>﹣1 D.k<﹣1
3.二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(-1,0),對(duì)稱軸為直線x=2,下列結(jié)論:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>-1時(shí),y的值隨x值的增大而增大.其中正確的結(jié)論有( ?。?br />
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
4.把不等式組的解集表示在數(shù)軸上,正確的是( )
A. B.
C. D.
5.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點(diǎn)得到直線l,在直線l上取一點(diǎn)C,使得∠CAB=25°,延長AC至點(diǎn)M,則∠BCM的度數(shù)為( )
A.40° B.50° C.60° D.70°
6.甲、乙兩人同時(shí)分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時(shí).結(jié)果兩人同時(shí)到達(dá)C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時(shí).由題意列出方程.其中正確的是( ?。?br />
A. B. C. D.
7.如果一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形的邊數(shù)是( ?。?br />
A.8 B.9 C.10 D.11
8.下列圖形中,不是軸對(duì)稱圖形的是( )
A. B. C. D.
9.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是( )
A. B. C. D.
10.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點(diǎn),DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
11.如圖,△ADE繞正方形ABCD的頂點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個(gè)結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.則正確的結(jié)論有( )
A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)
12.如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是( )
A.10π B.15π C.20π D.30π
二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)
13.若xay與3x2yb是同類項(xiàng),則ab的值為_____.
14.同時(shí)擲兩個(gè)質(zhì)地均勻的骰子,觀察向上一面的點(diǎn)數(shù),兩個(gè)骰子的點(diǎn)數(shù)相同的概率為 .
15.為參加2018年“宜賓市初中畢業(yè)生升學(xué)體育考試”,小聰同學(xué)每天進(jìn)行立定跳遠(yuǎn)練習(xí),并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是_____.
16.因式分解:9a2﹣12a+4=______.
17.若不等式(a﹣3)x>1的解集為,則a的取值范圍是_____.
18.如圖,直線y=k1x+b與雙曲線交于A、B兩點(diǎn),其橫坐標(biāo)分別為1和5,則不等式k1x<+b的解集是 ▲ .
三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
19.(6分)某校為了創(chuàng)建書香校遠(yuǎn),計(jì)劃進(jìn)一批圖書,經(jīng)了解.文學(xué)書的單價(jià)比科普書的單價(jià)少20元,用800元購進(jìn)的文學(xué)書本數(shù)與用1200元購進(jìn)的科普書本數(shù)相等.文學(xué)書和科普書的單價(jià)分別是多少元?該校計(jì)劃用不超過5000元的費(fèi)用購進(jìn)一批文學(xué)書和科普書,問購進(jìn)60本文學(xué)書后最多還能購進(jìn)多少本科普書?
20.(6分)甲、乙兩人分別站在相距6米的A、B兩點(diǎn)練習(xí)打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點(diǎn)H與甲的水平距離AE為4米,現(xiàn)以A為原點(diǎn),直線AB為x軸,建立平面直角坐標(biāo)系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達(dá)式及飛行的最高高度.
21.(6分)已知拋物線的開口向上頂點(diǎn)為P
(1)若P點(diǎn)坐標(biāo)為(4,一1),求拋物線的解析式;
(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時(shí),求y的取值范圍(用含a的代數(shù)式表示)
(3)若a=1,且當(dāng)0≤x≤1時(shí),拋物線上的點(diǎn)到x軸距離的最大值為6,求b的值
22.(8分)某同學(xué)報(bào)名參加學(xué)校秋季運(yùn)動(dòng)會(huì),有以下 5 個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用 T1、T2 表示).該同學(xué)從 5 個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率 P 為 ;該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),求恰好是一個(gè)徑賽項(xiàng)目和一個(gè)田賽項(xiàng)目的概率 P1,利用列表法或樹狀圖加以說明;該同學(xué)從 5 個(gè)項(xiàng)目中任選兩個(gè),則兩個(gè)項(xiàng)目都是徑賽項(xiàng)目的概率 P2 為 .
23.(8分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與),軸交于點(diǎn)C.拋物線的對(duì)稱軸是直線x=﹣2,D是拋物線的頂點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)﹣<x<1時(shí),請(qǐng)求出y的取值范圍;
(3)連接AD,線段OC上有一點(diǎn)E,點(diǎn)E關(guān)于直線x=﹣2的對(duì)稱點(diǎn)E'恰好在線段AD上,求點(diǎn)E的坐標(biāo).
24.(10分)將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸.
25.(10分)如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,直線y=x+4經(jīng)過點(diǎn)A、C,點(diǎn)P為拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的表達(dá)式;
(2)如圖,當(dāng)CP//AO時(shí),求∠PAC的正切值;
(3)當(dāng)以AP、AO為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上時(shí),求出此時(shí)點(diǎn)P的坐標(biāo).
26.(12分)從廣州去某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.求普通列車的行駛路程;若高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求高鐵的平均速度.
27.(12分)如圖,AD是△ABC的中線,過點(diǎn)C作直線CF∥AD.
(問題)如圖①,過點(diǎn)D作直線DG∥AB交直線CF于點(diǎn)E,連結(jié)AE,求證:AB=DE.
(探究)如圖②,在線段AD上任取一點(diǎn)P,過點(diǎn)P作直線PG∥AB交直線CF于點(diǎn)E,連結(jié)AE、BP,探究四邊形ABPE是哪類特殊四邊形并加以證明.
(應(yīng)用)在探究的條件下,設(shè)PE交AC于點(diǎn)M.若點(diǎn)P是AD的中點(diǎn),且△APM的面積為1,直接寫出四邊形ABPE的面積.
參考答案
一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)
1、A
【解析】
連接B′D,過點(diǎn)B′作B′M⊥AD于M.設(shè)DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質(zhì)和折疊的性質(zhì)得到:(7-x)2=25-x2,通過解方程求得x的值,易得點(diǎn)B′到BC的距離.
【詳解】
解:如圖,連接B′D,過點(diǎn)B′作B′M⊥AD于M,
∵點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在∠ADC的角平分線上,
∴設(shè)DM=B′M=x,則AM=7﹣x,
又由折疊的性質(zhì)知AB=AB′=5,
∴在直角△AMB′中,由勾股定理得到:,
即,
解得x=3或x=4,
則點(diǎn)B′到BC的距離為2或1.
故選A.
【點(diǎn)睛】
本題考查的是翻折變換的性質(zhì),掌握翻折變換是一種對(duì)稱變換,它屬于軸對(duì)稱,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等是解題的關(guān)鍵.
2、D
【解析】
根據(jù)正比例函數(shù)圖象與系數(shù)的關(guān)系列出關(guān)于k的不等式k+1<0,然后解不等式即可.
【詳解】
解:∵正比例函數(shù) y=(k+1)x中,y的值隨自變量x的值增大而減小,
∴k+1<0,
解得,k<-1;
故選D.
【點(diǎn)睛】
本題主要考查正比例函數(shù)圖象在坐標(biāo)平面內(nèi)的位置與k的關(guān)系.解答本題注意理解:直線y=kx所在的位置與k的符號(hào)有直接的關(guān)系.k>0時(shí),直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時(shí),直線必經(jīng)過二、四象限,y隨x的增大而減?。?br />
3、B
【解析】
根據(jù)拋物線的對(duì)稱軸即可判定①;觀察圖象可得,當(dāng)x=-3時(shí),y<0,由此即可判定②;觀察圖象可得,當(dāng)x=1時(shí),y>0,由此即可判定③;觀察圖象可得,當(dāng)x>2時(shí),的值隨值的增大而增大,即可判定④.
【詳解】
由拋物線的對(duì)稱軸為x=2可得=2,即4a+b=0,①正確;
觀察圖象可得,當(dāng)x=-3時(shí),y<0,即9a-3b+c<0,所以,②錯(cuò)誤;
觀察圖象可得,當(dāng)x=1時(shí),y>0,即a+b+c>0,③正確;
觀察圖象可得,當(dāng)x>2時(shí),的值隨值的增大而增大,④錯(cuò)誤.
綜上,正確的結(jié)論有2個(gè).
故選B.
【點(diǎn)睛】
本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0),二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小,當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口;一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置,當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左; 當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右;常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn). 拋物線與y軸交于(0,c);拋物線與x軸交點(diǎn)個(gè)數(shù)由△決定,△=b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);△=b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);△=b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn).
4、A
【解析】
分別求出各個(gè)不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.
【詳解】
由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數(shù)軸上表示為:
.
故選A.
【點(diǎn)睛】
本題考查的是解一元一次不等式組.熟知“同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到”的原則是解答此題的關(guān)鍵.
5、B
【解析】
解:∵由作法可知直線l是線段AB的垂直平分線,
∴AC=BC,
∴∠CAB=∠CBA=25°,
∴∠BCM=∠CAB+∠CBA=25°+25°=50°.
故選B.
6、A
【解析】
設(shè)乙騎自行車的平均速度為x千米/時(shí),則甲騎自行車的平均速度為(x+2)千米/時(shí),根據(jù)題意可得等量關(guān)系:甲騎110千米所用時(shí)間=乙騎100千米所用時(shí)間,根據(jù)等量關(guān)系可列出方程即可.
解:設(shè)乙騎自行車的平均速度為x千米/時(shí),由題意得:
=,
故選A.
7、A
【解析】
分析:根據(jù)多邊形的內(nèi)角和公式及外角的特征計(jì)算.
詳解:多邊形的外角和是360°,根據(jù)題意得:
110°?(n-2)=3×360°
解得n=1.
故選A.
點(diǎn)睛:本題主要考查了多邊形內(nèi)角和公式及外角的特征.求多邊形的邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.
8、A
【解析】
觀察四個(gè)選項(xiàng)圖形,根據(jù)軸對(duì)稱圖形的概念即可得出結(jié)論.
【詳解】
根據(jù)軸對(duì)稱圖形的概念,可知:選項(xiàng)A中的圖形不是軸對(duì)稱圖形.
故選A.
【點(diǎn)睛】
此題主要考查了軸對(duì)稱圖形,軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,對(duì)稱軸可使圖形兩部分折疊后重合.
9、A
【解析】
∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
設(shè)CD=1,CF=x,則CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故選:A.
10、A
【解析】
∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF與△ABC的面積之比= ,
又∵△ABC為正三角形,
∴∠B=∠C=∠A=60°
∴△EFD是等邊三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,F(xiàn)D⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=EC,
在Rt△DEC中,
DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
又∵DC+BD=BC=AC=DC,
∴,
∴△DEF與△ABC的面積之比等于:
故選A.
點(diǎn)晴:本題主要通過證出兩個(gè)三角形是相似三角形,再利用相似三角形的性質(zhì):相似三角形的面積之比等于對(duì)應(yīng)邊之比的平方,進(jìn)而將求面積比的問題轉(zhuǎn)化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關(guān)系(銳角三角形函數(shù))即可得出對(duì)應(yīng)邊之比,進(jìn)而得到面積比.
11、C
【解析】
由旋轉(zhuǎn)性質(zhì)得到△AFB≌△AED,再根據(jù)相似三角對(duì)應(yīng)邊的比等于相似比,即可分別求得各選項(xiàng)正確與否.
【詳解】
解:由題意知,△AFB≌△AED
∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
∴AE⊥AF,故此選項(xiàng)①正確;
∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;
∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項(xiàng)②正確;
∵△AEF與△AHF不相似,
∴AF2=FH·FE不正確.故此選項(xiàng)③錯(cuò)誤,
∵HB//EC,
∴△FBH∽△FCE,
∴FB:FC=HB:EC,故此選項(xiàng)⑤正確.
故選:C
【點(diǎn)睛】
本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí),熟練地應(yīng)用旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì)是解決問題的關(guān)鍵.
12、B
【解析】
由三視圖可知此幾何體為圓錐,∴圓錐的底面半徑為3,母線長為5,
∵圓錐的底面周長等于圓錐的側(cè)面展開扇形的弧長,
∴圓錐的底面周長=圓錐的側(cè)面展開扇形的弧長=2πr=2π×3=6π,
∴圓錐的側(cè)面積=lr=×6π×5=15π,故選B
二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)
13、2
【解析】
試題解析:∵xay與3x2yb是同類項(xiàng),
∴a=2,b=1,
則ab=2.
14、
【解析】
試題分析:首先列表,然后根據(jù)表格求得所有等可能的結(jié)果與兩個(gè)骰子的點(diǎn)數(shù)相同的情況,再根據(jù)概率公式求解即可.
解:列表得:
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36種等可能的結(jié)果,
兩個(gè)骰子的點(diǎn)數(shù)相同的有6種情況,
∴兩個(gè)骰子的點(diǎn)數(shù)相同的概率為:=.
故答案為.
考點(diǎn):列表法與樹狀圖法.
15、2.40,2.1.
【解析】
∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它們的中位數(shù)為2.40,眾數(shù)為2.1.
故答案為2.40,2.1.
點(diǎn)睛:本題考查了中位數(shù)和眾數(shù)的求法,如果一組數(shù)據(jù)有奇數(shù)個(gè),那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果一組數(shù)據(jù)有偶數(shù)個(gè),那么把這組數(shù)據(jù)從小到大排列后,排在中間位置的兩個(gè)數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是這組數(shù)據(jù)的眾數(shù).
16、(3a﹣1)1
【解析】
直接利用完全平方公式分解因式得出答案.
【詳解】
9a1-11a+4=(3a-1)1.
故答案是:(3a﹣1)1.
【點(diǎn)睛】
考查了公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.
17、.
【解析】
∵(a?3)x>1的解集為x
這是一份陜西省榆林市定邊縣2022年中考聯(lián)考數(shù)學(xué)試題含解析,共21頁。試卷主要包含了如圖,雙曲線y=等內(nèi)容,歡迎下載使用。
這是一份陜西省榆林市定邊縣重點(diǎn)達(dá)標(biāo)名校2021-2022學(xué)年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析,共23頁。試卷主要包含了答題時(shí)請(qǐng)按要求用筆,下列命題是假命題的是,下列各式計(jì)算正確的是等內(nèi)容,歡迎下載使用。
這是一份陜西省定邊縣聯(lián)考2021-2022學(xué)年中考適應(yīng)性考試數(shù)學(xué)試題含解析,共20頁。試卷主要包含了答題時(shí)請(qǐng)按要求用筆,下列式子成立的有個(gè)等內(nèi)容,歡迎下載使用。
微信掃碼,快速注冊(cè)
注冊(cè)成功